项目名称: 发展从头算动力学方法模拟有机太阳能电池中的电子转移

项目编号: No.91233106

项目类型: 重大研究计划

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 兰峥岗

作者单位: 中国科学院青岛生物能源与过程研究所

项目金额: 80万元

中文摘要: 光诱导的电子转移在光伏材料的光能转换中扮演了重要角色。有机太阳能电池中除了包含一般的电子转移过程(可以使用传统的Marcus理论描述),超快的电子转移也扮演了重要的角色。而后者无法使用Marcus理论描述。本项目旨在发展从头算动力学方法,在直接动力学(从头算动力学)的框架下,描述有机太阳能电池中的超快电子转移过程。在该方法中,电子结构计算将使用TDDFT方法,考虑近年来新发展的可以正确描述电荷转移态的泛函形式(如PBE0)处理相关的电子转移态;而电子转移过程引起的非绝热动力学将采用最小面跳跃方法描述。本项目希望建立此研究方案并编写相关程序,并将该研究方法用于研究有机太阳能电池中的超快电子转移问题,比如噻吩的衍生物,C60的衍生物和两者间的电子转移过程。希望通过本项目系统的建立一套新的理论框架,进一步研究电子转移的机理,深入理解相关光伏材料的光电性质,从而为实验设计高效能光能转换材料奠定理论

中文关键词: 有机光伏;非绝热动力学;激发态;电子转移;能量转移

英文摘要: Photoinduced electron transfers are crucial in the solar-energy conversion of photovoltaic materials. In organic solar cells, beside ordinary electron transfers described well by Marcus theory, ultrafast electron transfers also play essential roles, which are beyond the scope of Marcus theory. To treat ultrafast electron transfers, novel theoretical method must be developed to describe corresponding nonadiabatic dynamics. We propose to develop the direct (or on-the-fly) dynamics approach to treat ultrafast electron transfer in organic solar cells. Within the current theoretical framework, electronic-structure calculations will be performed at TDDFT level with recently-developed novel functionals (such as PBE0) that can give the correct description of charge-transfer states. Nonadiabatic transitions in electron transfers will be treated by surface-hopping method with fewest-switches algorithm. After method development and code implementation, ultrafast electron transfers in organic solar cells will be investigated, which include the intra-molecular electron transfers of thiophene derivatives and C60 derivatives, as well as inter-molecular electron transfers between them. The current project will provide a deep understanding of photoelectric-conversion properties of organic solar cells at atomic level, and will gi

英文关键词: organic photovoltaics;nonadiabatic dynamics;excited states;electron transfer;energy transfer

成为VIP会员查看完整内容
0

相关内容

专知会员服务
28+阅读 · 2021年8月27日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
智慧城市白皮书(2021年)
专知会员服务
176+阅读 · 2021年4月24日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2020新书】机器学习在能源行业中的应用,315页pdf
专知会员服务
121+阅读 · 2020年11月3日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
21+阅读 · 2019年8月21日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
28+阅读 · 2021年8月27日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
智慧城市白皮书(2021年)
专知会员服务
176+阅读 · 2021年4月24日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2020新书】机器学习在能源行业中的应用,315页pdf
专知会员服务
121+阅读 · 2020年11月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员