项目名称: 超低待机功耗快速唤醒的微控制器关键技术研究

项目编号: No.61474022

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 杨军

作者单位: 东南大学

项目金额: 92万元

中文摘要: 随着传感器网络(WSN)应用日益广泛,对节点微控制器(MCU)提出了更高要求:更低待机功耗和更高实时性。传统MCU处理器多采用多电压域和关机态实现功耗控制,但存在实时性差、切换功耗大等缺点,新型低待机功耗和快速唤醒的WSN MCU在学术界和工业界引起了广泛关注。区别于NEC等公司提出的基于铁电存储器(FeRAM)的技术路线,本项目提出了基于亚阈值/近阈值电路的待机态取代传统关机态的新思路,将实现微瓦(uW)级待机功耗和微秒(uS)级唤醒时间。围绕该目标,项目将突破三项关键技术:最优能效建模及最佳待机工作电压优化、低延时抖动的宽电压(0.3V~1.2V)标准单元和低功耗宽电压SRAM(已经获得美国/欧盟等国际专利)。在此基础上,基于TSMC 90nm E-FLASH工艺设计验证芯片,实现超低待机功耗和待机态快速唤醒,从而为WSN MCU探索一种新的研究思路。

中文关键词: 传感器网络;低功耗;近阈值

英文摘要: As Wireless Sensor Network (WSN) becomes more and more popular in several fields, lower standby power and higher real-time property becomes the most important factors in WSN MCU design. Multi-voltage and sleep mode is widely used in the traditional WSN processor to achieve low power implementation of WSN node.But its wakeup time (nearly 100ms) is too long for many applications. So the noval low wakeup time and low standby power in WSN MCU is the most important research area in academic and industy. Compared with FeRAM based design techniques proposed by NEC, a new standby mode which is based on sub-threshold and near-threshold circuit is proposed in this project. Three key technologies are explored: the optimal energy efficiency modeling and optimal standby power supply voltage、standard cell library design with low delay variation、low power SRAM cell which is patented by US/EU.A test chip will be designed with TSMC 90nm E-Flash technology, and it will demostrates the potential of super low standby power (~uW) and fast wakeup time (~uS).

英文关键词: Wireles Sensor Network;Low Power;Near Threshold

成为VIP会员查看完整内容
1

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
面向大数据处理框架的JVM优化技术综述
专知会员服务
17+阅读 · 2021年11月27日
专知会员服务
65+阅读 · 2021年5月3日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
能效比提升超两倍,全球最高效ADC芯片问世
机器之心
0+阅读 · 2021年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
33+阅读 · 2021年12月31日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
面向大数据处理框架的JVM优化技术综述
专知会员服务
17+阅读 · 2021年11月27日
专知会员服务
65+阅读 · 2021年5月3日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员