项目名称: 硫化物纳米晶墨水/石墨烯复合对电极的可控构筑及其催化特性
项目编号: No.21473051
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 潘凯
作者单位: 黑龙江大学
项目金额: 80万元
中文摘要: 过渡金属硫化物/石墨烯复合结构因其导电性好、催化性能优异且价格低廉,是很好的染料敏化太阳能电池对电极材料。但通常丝网印刷制备的复合结构对电极,石墨烯容易团聚、硫化物在石墨烯表面不能很好的均匀分散,降低了对电极的导电性和催化点位,从而导致电子传输与催化特性降低。申请者拟采用希莱克技术制备不同尺寸、不同种类的高结晶度的硫化物纳米晶墨水;在前期电泳沉积制备的石墨烯对电极的基础上,利用喷涂包覆的方法可控的构筑均匀分散的硫化物/石墨烯复合对电极。利用密度泛函理论系统的计算氧化还原电对在不同种类纳米晶表面的吸附能和电子态密度;集成运用循环伏安和电化学阻抗详细的研究对电极的催化特性、稳定性及其界面传输电阻、电子寿命和电子扩散距离,从理论和实验两方面归纳总结出不同尺寸、不同种类的硫化物纳米晶/石墨烯复合材料对光电池性能的影响,探索制备廉价、高性能硫化物纳米晶/石墨烯复合对电极的新途径。
中文关键词: 纳米晶墨水;复合对电极;密度泛函理论;吸附能;电子传输
英文摘要: Graphene/transition metal sulfides composites are good counter electrode materials of dye-sensitized solar cells (DSSCs) for their excellent high conductivity, catalytic character and inexpensive cost. But the conventional graphene-based composite counter electrodes are fabricated by doctor-blade method, the graphene could be aggregated easily, and the sulfides could not be well dispersed on the surface of graphene. This will result in the decrease of conductivity and catalytic site. So,the electron transfer and catalytic properties are decreased. The applicant will first controllably synthesize the sulfide nanocrystal ink with different size and species using Schlenk line technique. Then, based on the already prepared graphene counter electrode prepared with electrophoretic deposition method, the well dispersion sulfide nanocrystal ink/graphene composite counter electrodes will be controllably fabricated with spraying coating method. Third, the adsorption energy and electron density of states of the redox shuttle on the surface of sulfide nanocrystal will be systematically calculated using the density functional theory. Final,the cyclic voltammetry and electrochemical impedance spectra (EIS) will be used for systematically investigating the catalytic properties,stability and the interfacial charge transfer resistance of the composite counter electrode-redox shuttle interface. Also, the photoelectron recombination time and diffusion length are investigated in quantitative scale. The regular pattern of the influence of composite counter electrode with different size and species sulfide nanocrystal ink on the DSSC power conversion efficiency will be summarized from the experiment and theory sections. It may explore the new route for the fabrication of counter electrode with inexpensive cost and high catalytic performance.
英文关键词: nanocrystal ink;composite electrode;density functional theory;adsorption energy;electron transfer