项目名称: 具有抑制电荷复合功能的吡嗪类有机敏化染料的研制及其光伏性能研究

项目编号: No.51273045

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 周刚

作者单位: 复旦大学

项目金额: 80万元

中文摘要: 吡嗪具有很强的拉电子能力,其衍生物种类较多,并易进行结构修饰和性能调控。本项目将吡嗪衍生物,如喹恶啉、吡嗪并喹恶啉和吡啶并吡嗪等,引入到传统D-π-A构型的染料中,构造D(-π)-A-π-A型有机敏化染料,利用吡嗪及其衍生物的强拉电子能力来增强分子内D-A作用,并赋予有机敏化染料特殊的光电性质,如广谱吸收、匹配的LUMO能级、高的稳定性以及吸附在工作电极上后吸收蓝移较小等。并将制备的吡嗪类染料组装染料敏化太阳能电池,通过性能测试和评价,研究吡嗪衍生物化学结构本身及其在染料分子中的具体位置-有机染料光电物理性质-太阳能电池器件性能之间的构效关系,探讨提高电池性能的有效途径。此外,我们还将在染料分子中引入特殊的官能团,赋予目标染料抑制电荷复合的功能,从而有效地降低电池中电荷复合造成的电流损失,以获得高性能的染料敏化太阳能电池材料。

中文关键词: 吡嗪;电荷转移;电荷复合;有机敏化染料;太阳能电池

英文摘要: Pyrazine has strong electron-withdrawing ability and the varieties of its derivatives facilitate their structure and property modification. In this application, pyrazine derivatives, such as quinoxaline, pyrazinoquinoxaline, and pyridopyrazine, will be introduced into the traditional "D-π-A" dyes. The resulted "D(-π)-A-π-A" configuration will enhance the intramolecular donor-acceptor interaction and therefore offer some special optoelectronic properties for the resulted dyes, such as wide absorption spectrum, suitable LUMO energy level, high stability and slight hypsochromic shift of the absorption maximum after anchoring on the working electrode. Dye-sensitized solar cells (DSSCs) based on the resulted dyes will be fabricated and their performance will be measured and evaluated. The relationship among the chemical structures, optoelectronic properties, and solar cell performance will be investigated to explore the effective pathway for the improvement of the solar cell performance. In addition, functional groups will be introduced into the sensitizers to suppress the charge recombination and reduce the photo-generated current loss so that efficient DSSC can be realized.

英文关键词: pyrazine;charge transfer;charge recombination;organic sensitizer;solar cell

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
CIKM2021 | CD-GNN:一种跨领域的图神经网络模型
专知会员服务
29+阅读 · 2021年11月9日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
CIKM2021 | CD-GNN:一种跨领域的图神经网络模型
专知会员服务
29+阅读 · 2021年11月9日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员