项目名称: CuInS2量子点的宏量可控合成及其宽光谱吸收太阳电池性能的研究

项目编号: No.51202002

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 岳文瑾

作者单位: 安徽工程大学

项目金额: 25万元

中文摘要: 半导体量子点太阳电池因具有高达66%的热力学转换效率而备受关注。选择低带隙的半导体量子点敏化纳米阵列制作的聚合物太阳电池具有独特的优势,能弥补聚合物吸收范围较窄的缺陷,是一种宽光谱吸收太阳电池。CuInS2是一种理想的光伏材料,然而聚合物与CuInS2量子点敏化的纳米阵列(CuInS2-NA)组成的太阳电池未见报道,主要问题在于量子点的宏量控制性制备困难、材料形态结构与电池器件性能的关系还不清楚。本项目以高效聚合物/CuInS2-NA太阳电池为目标牵引,针对影响宽谱电池性能的量子点结构因素,拟通过溶剂热方法控制性地宏量合成CuInS2量子点以及CuInS2-NA复合材料,系统地研究量子点的晶型、尺寸等对电池光电转换性能的影响,揭示电池的工作原理和影响器件性能的材料结构因素,为聚合物/CuInS2-NA电池材料及器件结构的优化提供科学依据。本项目的实施将促进低价太阳电池的发展。

中文关键词: CuInS2;合成;太阳电池;量子点;

英文摘要: Semiconductor quantum dots solar cells are predicted to have a maximum attainable thermodynamic conversion efficiency up to 66%. Polymer solar cells based on nanoarrays sensitized with quantum dots of low bandgap semiconductors have expanded absorption spectrum with respect to that of polymer, which is potential for the development of solar cells with wide absorption range. CuInS2 is an ideal photovoltaic material, however, scarce studies on solar cells based on polymer and nanoarrys sensitized with CuInS2 quantum dots (CuInS2-NA) have been reported. On one hand, macroscale and controllable synthesis of QDs is difficult; moreover, the relation between materials structure and device performance is not clear. In order to attain highly efficient polymer/CuInS2-NA solar cells,aimed to the effects of quantum dots structure on device parameters of solar cells with wide absorption range, we plan to synthesiz CuInS2 quantum dots and CuInS2-NA composites by solvothermal method, and the relation between the photovoltaic performance and the structural characteristics of CuInS2 quantum dots (e.g.,crystallographic structure,size) in the solar cells will be studied systemically, with the deep insight into the working principle and charge transfer features in the devices, which is crucially important for optimization of the ma

英文关键词: CuInS2;Synthesis;Solar cells;Quantum dots;

成为VIP会员查看完整内容
0

相关内容

中国能源体系 碳中和路线图,254页pdf
专知会员服务
74+阅读 · 2022年3月23日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
【微信@CIKM2021 】 强化学习推荐模型的知识蒸馏探索之路
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
8+阅读 · 2021年9月22日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
中国能源体系 碳中和路线图,254页pdf
专知会员服务
74+阅读 · 2022年3月23日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
【微信@CIKM2021 】 强化学习推荐模型的知识蒸馏探索之路
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
8+阅读 · 2021年9月22日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员