项目名称: 稀土镓酸盐中离子传导机制的研究与新型固体电解质设计

项目编号: No.11274081

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 刘志国

作者单位: 哈尔滨工业大学

项目金额: 90万元

中文摘要: 作为高效、低污染、可持续发展的新一代能源,固体氧化物燃料电池是有望在未来替代热电厂、燃油发动机等的能量转换装置。现有的固体电解质还不能满足其实用化的要求。发展高性能的固体电解质,需要深刻理解离子在晶格中迁移机制。目前尚缺少一个完善的理论描述,多数报道局限于讨论晶格结构对电导率的影响。针对这一情况,本研究将兼顾晶格结构和晶格离子极化率两个方面。选择最具发展潜力的稀土镓酸盐电解质为研究对象,利用小半径稀土掺杂改变晶格结构,利用高极化率的s2离子掺杂来调节极化率。小半径稀土的引入将提高正交-菱方相变到工作温度以上、降低高氧压下的空穴导电,并能降低导电活化能,使其在中低温范围内的电导率更具竞争力。在晶格中引入s2离子会降低离子扩散的势垒,从而提高电导率。系统总结这两个因素对电导率影响的规律性,以期找到可替代掺杂LaGaO3、工作于中低温区的、性能优良的固体电解质。

中文关键词: 固体氧化物燃料电池;固体电解质;高压;稀土镓酸盐;钙钛矿

英文摘要: Solid oxide fuel cell, as a new generation energy source with the characters of high efficiency, low pollution and long-term development, is a hopeful energy-conversion device that will be the substitution of fossil fuel based power plant, engine, etc. Current solid electrolytes can not fulfil the requirement for application. Developing novel solid electrolyte with high performance demands deep understanding of the mechanism of ion transport in lattice. However, most reports focus on the influence of lattice structure on the conductivity of solid electrolyte, and no comprehensive theory exists at the present time. In this proposal, lattice structure and susceptibility are both considered for the design of novel solid electrolytes. Rare earth gallates, which are the most hopeful for application, is selected for investigation. The lattice structure and susceptibility are tuned by doping rare earth ions with small radius and s2 ions, respectively. Doping rare earth ions with small radius can increase the orthorhombic-rhombohedral transition temperature higher than the operating temperature, hinder hole conduction at low oxygen partial pressure, lower activation energy, making it more competitive in the middle and low temperatures. The introdution of s2 ions can lower the barrier for oxygen vacancy immigration, henc

英文关键词: Solid Oxide Fuel Cell;solid electrolyte;high pressure;rare earth gallate;perovskite

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月10日
专知会员服务
30+阅读 · 2021年3月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
20+阅读 · 2021年9月21日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月10日
专知会员服务
30+阅读 · 2021年3月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员