项目名称: 晶格匹配InAlN/GaN HEMT肖特基栅极泄漏电流的退化机制研究

项目编号: No.61504050

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 闫大为

作者单位: 江南大学

项目金额: 20万元

中文摘要: 凭借优越的材料特性,GaN基HEMTs能输出远大于常规Si LD-MOSFETs和GaAs MESFETs的功率密度,在无线通信和雷达系统中具有重要的应用价值。然而,在长时间大信号工作模式下,GaN HEMTs的肖特基栅极却遭受严重的漏电流退化行为,产生不必要的低频噪音和额外功率损耗。鉴于此,本项目拟在晶格匹配InAlN/GaN外延片上制备与标准器件栅极电学性能相同的肖特基结构,(1)利用步进应力法测试和分析漏电流的退化行为,直接验证传统逆压电模型的正确性;(2)利用EMMI监测退化过程中“热点”(即电流失效点)的产生和演化过程,使用C-AFM分析退化前后“热点”处材料表面结构和电导特性的变化,直接验证新结构缺陷的产生是否为电流退化的直接原因;(3)使用高压、高温和电流应力法制备结构相同而缺陷密度不同的样品,分析缺陷对漏电流输运机制的影响。最终,我们将提出一个唯象栅极漏电流退化模型。

中文关键词: 宽禁带半导体;异质结;HEMT;可靠性

英文摘要: Thanks to their excellent material properties, GaN HEMTs can output much higher power density than conventional Si LD-MOSFETs and GaAS MESFETs , which have important applications in the wireless communication and radar systems. Unfortunately, when they are operated in a long-term large signal mode, the gate leakage current suffers from a significant degradation behavior, giving rise to undesirable low-frequency noise and additional power loss. So, in this project we will fabricate circular Schottky contact structure on lattice-matched InAlN/GaN HEMTs epi-wafer, which is of the same electrical properties with the Schottky gate structure of a standard device, and will (1) identify the validity of the inverse piezoelectric effect for gate leakage current degradation by step-stress measurements; (2) and will monitor the “hot spots” (namely current failure points ) for their occurrence and evolution processes by EMMI, and measure the underlying surface structure and conductance property by C-AFM, indicating that the generation of additional structure defects are directly related with the current degradation; (3) will obtain a series of defective samples by high various methods such as revere bias, high temperature and current stresses, studying the current transport mechanisms before and after degradation. Finally,we will propose a phenomenological model for the gate leakage current degradation.

英文关键词: wide band gap;heterojunction;high electron mobility transistor;Reliability

成为VIP会员查看完整内容
0

相关内容

专知会员服务
7+阅读 · 2021年9月22日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
35+阅读 · 2021年9月5日
专知会员服务
30+阅读 · 2021年6月4日
专知会员服务
19+阅读 · 2021年4月7日
【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
27+阅读 · 2021年3月4日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【KDD2021】基于生成对抗图网络的不平衡网络嵌入
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
小贴士
相关VIP内容
专知会员服务
7+阅读 · 2021年9月22日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
35+阅读 · 2021年9月5日
专知会员服务
30+阅读 · 2021年6月4日
专知会员服务
19+阅读 · 2021年4月7日
【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
27+阅读 · 2021年3月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员