项目名称: 站立式石墨烯超级电容器储能基础物性及双电层界面传质机理研究

项目编号: No.51306159

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 能源与动力工程

项目作者: 薄拯

作者单位: 浙江大学

项目金额: 26万元

中文摘要: 传统化学法制备的水平石墨烯极易在分散、干燥、粘结等环节中形成大量层间团聚,严重影响活性载体的有效储能面积和储能效果。本项目提出基于站立式石墨烯的新型超级电容器电极,可有效避免层间团聚、提高载体浸润、促进离子扩散和电荷转移,具有高效储能的潜力。项目将对具有不同形貌结构的站立式石墨烯活性载体开展全面的储能基础物性和储能性能测试,针对站立式石墨烯独特的形貌结构特点,基于热力学和界面双电层经典理论,充分考虑石墨烯层间浸润和电荷输运,从宏观到微观多层次耦合建立站立式石墨烯和电解液界面传质模型,对其储能特性进行解释并探索提高有效储能面积的途径,实现储能性能优化。项目成果将对现有石墨烯双电层电容理论形成有益补充,对站立式石墨烯超级电容器储能的发展具有前瞻性意义,有利于储能技术及相关领域的发展。

中文关键词: 储能;石墨烯;双电层;传质机理;超级电容器

英文摘要: Current practice of fabricating horizontal graphene-based supercapacitor electrode with chemical method owns the disadvantage of rapid restacking of graphene sheets during the dispersing, drying, and binding processes, which would strongly reduce the intersheet open channels and decrease the actual electrochemically accessible electrode surface area. This project proposed a novel supercapacitor electrode employing standing graphene as the energy storage active materials, owning the advantages beyond horizontal graphene counterpart in terms of avoiding interlayer restacking, improving active material wettability, as well as enhancing ion diffusion and charge transport, and potentially benefiting the energy storage performances. Experimental research will be conducted on the basic characteristics and capacitive behaviors of standing graphene with various morphologies and structures. Based on the classical thermodynamics and electrical double-layer theories, a comprehensive model on the standing graphene-electrolyte interfacial mass transfer mechanism will be built with coupling the macroscopic material wetting and microscopic charge transport, which will be used to explain the as-obtained capacitive behaviors of standing graphene and further provide pathways for energy storage performance optimization. The outputs

英文关键词: Energy storage;Graphene;Electric double-layer;Mass transfer mechanism;Supercapacitor

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
116页《数字乡村建设指南1.0》
专知会员服务
15+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
全新量子充电技术:最快9秒充满一辆电动汽车?
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
116页《数字乡村建设指南1.0》
专知会员服务
15+阅读 · 2022年3月23日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员