项目名称: 锂离子电池负极材料二硫化钼电化学反应行为的原位透射电镜研究

项目编号: No.11504330

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 苏庆梅

作者单位: 浙江师范大学

项目金额: 21万元

中文摘要: 对锂离子电池电极材料在电化学反应过程中的微结构演变进行动态表征、从根本上探寻其微观电化学反应机制和电池失效过程、理解其微观结构和电化学性能之间的直接对应关系,是锂离子电池研究领域基本且迫切需要的研究课题。本项目基于原位电子显微学技术,将透射电子显微镜(TEM)作为开展原位动态实验的研究平台,结合纳米操纵手原位操纵手段实现MoS2负极材料电化学反应过程的原位动态表征与实时分析。充分利用TEM的高分辨率与纳米操纵手的原位操纵本领,从原子层面探索充放电过程中MoS2的微结构演变规律和固体电解质界面(SEI)膜的形成机理,清晰认识MoS2的电化学反应机制和工作机理,以解决电池器件中的关键基础科学问题。研究的目的在于建立MoS2性能测试与原位结构表征的多功能一体化研究平台,揭示MoS2电极材料微观结构与电化学性能之间的内在联系,并理解其反应机制,对提升电池可靠性和研发高效电池具有重要的指导意义。

中文关键词: 原位透射电镜;二硫化钼;锂离子电池;纳米结构表征;电化学行为

英文摘要: Dynamic characterization of the microstructure evolution in anodes of lithium-ion batteries during electrochemical processes, fundamental exploring of the microscopic electrochemical mechanism and failure process of battery, and understanding of the direct relationship between microstructure and electrochemical performances, are the basic and urgent researches for lithium-ion batteries. In this project, based on in situ electron microscopy technology and in situ manipulation methods, we intend to use a transmission electron microscopy (TEM) as a dynamic experiment platform and nanofactory to achieve in situ dynamic characterization and real-time analysis of MoS2 anode materials during electrochemical reaction processes. We make the best of advantage of high resolution of TEM and in situ manipulation, explore the microstructure evolution law in MoS2 and the formation mechanism of the solid electrolyte interface (SEI) film during charging and discharging processes at atomic level, and understand the electrochemical reaction and working mechanism of MoS2, thus, to solve the key basic scientific problems of battery components. The purpose of the study is to establish a multi-function integrated research platform of electrochemical performance test and in situ structure characterization of MoS2, to reveal the intrinsic relationship between microstructure and electrochemical properties of the electrode materials, and to understand the reaction mechanism of them, also it has important guiding significance to improve reliability of battery and develop efficient battery.

英文关键词: in situ transmission electron microscopy;molybdenum disulfide; lithium-ion battery;nanostructure characterization;electrochemical behavior

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
2021年中国数字人民币发展研究报告
专知会员服务
25+阅读 · 2021年11月28日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】细粒度多标签分类
专知会员服务
61+阅读 · 2021年3月8日
【ICML2020-华为港科大】RNN和LSTM有长期记忆吗?
专知会员服务
77+阅读 · 2020年6月25日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
2021年中国数字人民币发展研究报告
专知会员服务
25+阅读 · 2021年11月28日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】细粒度多标签分类
专知会员服务
61+阅读 · 2021年3月8日
【ICML2020-华为港科大】RNN和LSTM有长期记忆吗?
专知会员服务
77+阅读 · 2020年6月25日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员