项目名称: 鳙大、小个体比较转录组及差异表达基因与体重的关联性研究
项目编号: No.31472268
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 农业科学
项目作者: 童金苟
作者单位: 中国科学院水生生物研究所
项目金额: 93万元
中文摘要: 快速生长是鱼类的重要经济性状,但调控鱼类生长速率的完整基因信息仍很缺乏。高通量测序技术使得在转录组水平上发掘与鱼类极端生长性状调控有关的海量基因成为可能。本研究拟以鳙家系和群体中极大和极小个体的下丘脑-垂体和肝脏为材料进行RNA-seq分析,以比较转录组方法揭示鳙极端生长差异有关的生长轴尤其神经内分泌系统的全部转录本及差异表达基因;同时拟以表达差异较大的50个基因为重点,开展基因表达量(qPCR)以及基因分子标记与体重的候选基因关联性和基于LD(linkage disequilibrium)的关联性分析。本项目的目标是发掘与鳙生长速率调控有关的一批关键基因,并在群体和家系水平进行基因-体重关系的功能性验证。本项目将为解析鱼类快速生长的分子遗传机制提供新线索,也将为鳙生长的分子育种研究提供具有实用价值的候选基因或主效基因及其分子标记。相关结果对鲤科经济鱼类遗传学和育种学基础研究具有重要意义。
中文关键词: 鳙(Hypophthalmichthys;nobilis);体重;比较转录组分析;差异表达基因;关联性
英文摘要: Fast growth is a highly important trait for aquaculture fish, However, up today,comprehensive information about genes involving in modulation of fast and slow growth remains rare in fish. Rapid development of highthrouphput nex-generation sequencing technologies allows us to ientify huge amounts of genes that may determine extreme growth traits in transcriptomes of fish. In this study, hypothalamic-pituitary and liver tissues of large size and small size bighead carp (Hypophthalmichthys nobilis) individuals from the same family and population, were used to perform RNA-seq,and comparative transcriptome analyses were applied to elucidate the whole transcripts of somatropic axis especially neuro-endocrine system and differentially expressed genes. Meanwhile,top 50 differentially expressed genes will be selected as the most important target to perform qPCR expression analysis, genetic association studies including candidate gene association analysis and LD (linkage disequilibrium)-based association analysis (or association mapping) for growth (body weight) trait and those 50 genes and their SSR (microsatellite)amd SNP (single nucleotide polymorphism) markers. The aims of this study are to identify a large amount of key genes in neuro-endocrine system involving in genetic modulation of growth rate in bighead carp, amd also to perform functional validation and association analyses for body weight and selected genes at family and population level. This study will provide valuable information and insights into the elucidation of genetic machanism for fast growth in fish, and also novel candidate genes or major genes and their molecular markers with practical values for the studies on molecular breeding in bighead carp. The results of this study will be also important for basic studies of fish genetics and breeding with theoretical and applied significance in economic fishes particularly those in Cyprinidae.
英文关键词: bighead carp (Hypophthalmichthys nobilis);body weight;comparative transcriptome;differentially expressed genes;association analysis