项目名称: 介质阻挡放电等离子体光子晶体的产生控制及其数值模拟

项目编号: No.11505044

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 范伟丽

作者单位: 河北大学

项目金额: 25万元

中文摘要: 作为一种新型可调的光子晶体,等离子体光子晶体以其广泛的应用前景和重要的基础研究价值,近年来成为等离子体领域和电磁波控制领域的热门交叉课题。针对目前研究工作主要集中于理论计算,而实验方面发展有限并且等离子体光子晶体的稳定性和可控性问题亟待解决的研究现状,本课题拟构建一个全新的等离子体光子晶体实验系统。提出采用特殊设计的强激光空间阵列引导放电方法以及空间周期性液体阵列电极方法,分别通过光控制和电控制,在介质阻挡放电系统中实现种类丰富且稳定可控的等离子体光子晶体;利用电学测量、光谱诊断、Bdot磁场测量以及高速ICCD成像等技术,对等离子体参量进行多方位诊断,认识等离子体光子晶体的物理性质和形成规律;基于实验诊断数据,理论计算等离子体光子晶体的能带结构。此外,进一步开发PIC-MCC粒子模拟程序,对介质阻挡放电等离子体光子晶体的产生机制进行模拟仿真。

中文关键词: 介质阻挡放电;等离子体光子晶体;粒子模拟

英文摘要: As a new type of tunable photonic crystals, the plasma photonic crystal (PPC) attracts great interest in the fields of plasma physics and electromagnetic wave control, due to its broad application potentials and high fundamental research values. However, the investigations of PPCs so far are mostly focused on the theoretical analysis, while the experimental studies are very limited. How to generate the PPCs with diverse symmetries in experiment, and keep them highly stable and controllable, is the most pressing problem. Here, we will propose a new plasma photonic crystal experimental system. By using the special designed spatial array of intense laser guiding discharge (optical method) or the spatial array of liquid electrodes (electrical method), a rich variety of stable and controllable PPCs can be obtained in dielectric barrier discharge (DBD). A systematic study on the physical properties and forming conditions of the PPCs are carried out with the further developed diagnostic methods, such as electrical measurement, spectrum diagnosis, Bdot magnetic-field measurement and the high speed ICCD imaging technologies. Given the key parameters obtained from the experiment, the photonic band diagrams of PPCs will be studied theoretically. Moreover, a two-dimensional Particle-In-Cell/Monte Carlo (PIC-MCC) simulation program will be developed in accordance with the experiment.

英文关键词: dielectric barrier discharge;plasma photonic crystal ;PIC-MCC simulation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
104+阅读 · 2021年8月23日
【干货书】Python科学编程,451页pdf
专知会员服务
127+阅读 · 2021年6月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2018年9月28日
小贴士
相关VIP内容
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
104+阅读 · 2021年8月23日
【干货书】Python科学编程,451页pdf
专知会员服务
127+阅读 · 2021年6月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员