项目名称: 具备聚硫离子多重锚定和三维锂离子传输网络的锂硫电池技术研究

项目编号: No.21476200

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 有机化学

项目作者: 李洲鹏

作者单位: 浙江大学

项目金额: 80万元

中文摘要: 锂硫电池是一种大容量锂离子电池,其能量密度是商业化锂离子电池的3-5倍,是电动车动力电池的最佳候选之一。锂硫电池在充放电过程中形成溶解于电解液的聚硫化锂,导致电池容量循环衰退极快。硫的绝缘性使电池的高倍率放电性能难以满足电动车的要求。因此,抑制聚硫化锂溶解和改善硫电极导电性已成为锂硫电池技术发展的关键。本项目以改性多孔碳为硫载体构筑聚硫化锂锚定中心,抑制聚硫化锂溶解。通过原位分析充放电过程中聚硫化锂的形成和消失,明确锚定位的种类、成分和结构,揭示锚定位固硫作用机理。在硫电极材料中利用多孔碳构建快速电子传输通道,利用锂离子型全氟磺酸树脂构建离子传输通道并抑制聚硫化锂溶出,剖析硫脱嵌锂过程、电子和锂离子的传输途径。设计优化硫电极材料、硫电极及其膜电极的组成与结构,构筑三维离子传输网络,强化离子传导,提高膜电极导电性和高倍率放电性能,获得具备长寿命、高能量密度和功率密度的锂硫电池核心技术。

中文关键词: 锂硫电池;膜电极;多孔碳改性;固体电解质;聚硫化锂

英文摘要: Li-S battery is one of Li-ion batteries with very high capacity. Its gravimetric energy density reaches 2500 Wh/kg that is 3-5 times compared with commericialized Li-ion batteries. Li-S battery is one of most potential power batteries for electric vehicles. However, the formation of soluable lithium polysulphide in liquid elctrolyte during charging and discharging processes in Li-S battery, results in a quick cycling capacity decay. The insulation nature of sulpher leads to a poor rate discharge performance which can not meet the requirements from electric vehicles. Therefore, depression of lithium polysulphide dissolution, and conductivity improvement of sulpher electrode are the critical issues in the development of Li-S battery technology. This project aims at lithium polysulphide anchoring site construction on modified porous carbon surfaces to depress lithium polysulphide dissolution. The in-situ characterizations via electric microscope and XRD is applied to analyze the lithium polysulphide appearance and disapearance during charging and discharging to elucidate the type, composition and structure of the anchoring sites for understanding the sulpher capature mechanism at the anchoring sites. The porous carbon functions as an electron distributor in the sulpher electrode material. Li-type perfluorinated resin-sulfonic acid is used for fabricating Li-ion distributor in porous carbon and depressing lithium polyphide dissolution. Studing the lithiation and delithiation procedures, and understanding the electron and Li-ion pathways are very important to improve the rate performance of sulpher electrode. A sulpher electrode with high conductivity without lithium polysulphide dissolution will be developed through composition and structure designs and material and electrode optimization. An electrode membrane assembly will be fabricated to attempt to enhance the Li-ion conductivity further for the rate performance improvement of the Li-S battery. The core technology related to Li-S battery with high rate performance and performance stability will be developed through these research activities metioned above.

英文关键词: Li-S battery;membrane electrode assembly;modification of porous carbon;solid electrolyte;Li polysulphide

成为VIP会员查看完整内容
0

相关内容

《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
32+阅读 · 2022年4月14日
中国信通院《5G应用创新发展白皮书》
专知会员服务
31+阅读 · 2022年3月9日
空天地一体化通信系统白皮书
专知会员服务
171+阅读 · 2022年2月26日
车联网白皮书,44页pdf
专知会员服务
78+阅读 · 2022年1月3日
专知会员服务
52+阅读 · 2021年8月17日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
103+阅读 · 2021年6月8日
专知会员服务
108+阅读 · 2021年4月7日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
新能源行业2022年我们关注什么?|光速Insight
创业邦杂志
1+阅读 · 2022年2月21日
我在快手,从0到1打造“快品牌”
人人都是产品经理
1+阅读 · 2022年1月26日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关主题
相关VIP内容
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
32+阅读 · 2022年4月14日
中国信通院《5G应用创新发展白皮书》
专知会员服务
31+阅读 · 2022年3月9日
空天地一体化通信系统白皮书
专知会员服务
171+阅读 · 2022年2月26日
车联网白皮书,44页pdf
专知会员服务
78+阅读 · 2022年1月3日
专知会员服务
52+阅读 · 2021年8月17日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
103+阅读 · 2021年6月8日
专知会员服务
108+阅读 · 2021年4月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
微信扫码咨询专知VIP会员