项目名称: 结构可控的高有序有机半导体结晶薄膜的溶液法生长及应用

项目编号: No.51503138

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 王滋

作者单位: 苏州大学

项目金额: 20万元

中文摘要: 有机薄膜的形态结构,如结晶质量、薄膜组分、薄膜构型等,对薄膜的迁移率等电学特性有重要影响,因此提高有机电子器件的一个重要途径就是对薄膜形态结构进行调控,其中实现结构可控的有序结晶薄膜对提高有机薄膜晶体管以及气体传感器性能具有重要意义。目前结构可控高有序结晶薄膜可由真空蒸镀实现,但其成本和技术要求较高;而简易、低成本的溶液法近年来在制备有序结晶薄膜上取得进步,但实现结构可控尚有难度。本项目提出以浸渍涂膜法为基础,结合修饰组装等手段实现结构可控的有序有机半导体结晶薄膜,并构建高性能有机薄膜晶体管和气体传感器。方案是首先通过浸渍涂膜法生长有序结晶薄膜,并通过研究薄膜形态结构与分子结构、生长参数的关系探索生长机制;在此基础上通过表面修饰、图案化以及多组分多层膜技术等实现对薄膜结构的人为控制;最后在优化的薄膜结构基础上通过构建异质结、掺杂体系调控薄膜电学性能,实现高性能的有机薄膜晶体管和气体传感器。

中文关键词: 有机半导体;溶液法;薄膜生长;可控结构;电子器件

英文摘要: The morphology and structure of the organic thin films, such as crystalline quality, film constituents and film configuration, have great effects on the electronic properties of the films. So an important route to improve the performances of organic electronic devices is to control the films’ morphology and structure. Among them, realizing structure-controllable ordered crystalline thin films shows great importance for organic thin film transistors and gas sensors. Now structure-controllable ordered crystalline thin films can be fabricated by vacuum deposition but with high cost and technology limit. Though solution process has made great progress in ordered crystalline films fabrication, it is still a challenge to realize controlling the structure. Here we propose to construct structure-controllable ordered crystalline thin films by solution process with the technology called dip-coating, as well as modification and assembly process; and improve performances of organic thin film transistors and gas sensors based on such films. Our plan is as follows: First, we try to fabricate ordered organic crystalline films by dip-coating, and investigate the growth mechanism by researching the relationship between the film morphology and molecule structure and growth parameters; Then realize controllable structure by surface modulation, patterning and multi- constituents or multilayer film fabrication technologies based on the former ordered structure; Last we aim to modulate the films’ electronic properties by forming heterojunctions and doping with optimized film structure, and obtain high performance organic thin film transistors and gas sensors.

英文关键词: Organic Semiconductor;Solution Method;Thin Film Growth;Controllable Structure;Electronic Devices

成为VIP会员查看完整内容
0

相关内容

116页《数字乡村建设指南1.0》
专知会员服务
15+阅读 · 2022年3月23日
车联网白皮书,44页pdf
专知会员服务
77+阅读 · 2022年1月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
54+阅读 · 2021年9月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
59+阅读 · 2021年8月24日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
《NLP典藏版合集》PDF电子书下载!
机器学习与推荐算法
1+阅读 · 2021年12月30日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
14+阅读 · 2020年2月6日
Arxiv
31+阅读 · 2018年11月13日
小贴士
相关VIP内容
116页《数字乡村建设指南1.0》
专知会员服务
15+阅读 · 2022年3月23日
车联网白皮书,44页pdf
专知会员服务
77+阅读 · 2022年1月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
54+阅读 · 2021年9月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
59+阅读 · 2021年8月24日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员