项目名称: 双键功能化的离子液体与电极表界面作用机理的研究

项目编号: No.51304183

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 矿业工程

项目作者: 董陶

作者单位: 中国科学院过程工程研究所

项目金额: 26万元

中文摘要: 针对正极活性物质在电解液中的溶解及电解液组分在电极表面的氧化分解,导致锂离子电池的循环性能和安全性能较差等问题,本项目旨在采用具有成膜作用的离子液体作为溶剂,在电极材料表面形成SEI膜,从而有效地抑制电解液与电极材料间的副反应发生。利用离子液体的可设计性,对阴阳离子结构进行调变,设计合成一系列低粘度的双键功能化的离子液体,并将其应用于锂离子电池电解液中。重点研究低粘度双键功能化的离子液体与镍锰正极表界面SEI膜的形成规律,分析离子液体的种类、组分及温度对正极表面SEI膜的影响。同时借助理论计算和分子模拟手段对离子液体的微观结构、化学键的断裂及聚合历程进行系统地研究,从理论上验证镍锰正极表面上SEI膜的形成。最终采用实验和理论计算相结合的方法,阐明离子液体与镍锰正极材料表界面的相互作用机理,提高锂离子电池的电性能,为锂离子电池商品化和性能提高提供重要的理论依据。

中文关键词: 离子液体;电解液;电极材料;;

英文摘要: The dissolution of positive active material into electrolyte and the oxidative decomposition of electrolyte on the electrode surface cause poor cycling performance and safety for lithium-ion batteries. In order to improve the above problem, ionic liquids which can form a passivating film on the electrode are used as new electrolyte solvents to replace the conventional organic carbonate in lithium-ion batteries.The SEI film can effectively suppress the secondary reaction occurred between electroyte and electrode. A series of double bond functionalized ionic liquids with low viscosity are prepared in this project,which can be designed by changing the structure of anion and cation and then used as solvents in electrolyte for lithium-ion batteries. This project is focused on the surface film formation on LiNi0.5Mn1.5O4 cathode material in different kinds of ionic liquid electrolyte and discuss the influencing factors to the surface film such as kinds of ionic liquid and temperature. The microstructure of ionic liquid, bonds broken and polymerization reaction are also investigated by the method ofquantum chemical calculation in order to confirm the formation of surface film on LiNi0.5Mn1.5O4 cathode material. At last, the interactional mechanism beween ionic liquid electrolyte and LiNi0.5Mn1.5O4 cathode material is

英文关键词: ionic liquid;electrolyte;electrode materials;;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
专知会员服务
50+阅读 · 2020年8月27日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
50+阅读 · 2020年4月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
16+阅读 · 2020年5月20日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关主题
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
专知会员服务
50+阅读 · 2020年8月27日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
50+阅读 · 2020年4月14日
相关资讯
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员