项目名称: 扶手椅型/锯齿型石墨烯超晶格纳米带的热输运及热电性能的理论研究

项目编号: No.11304059

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 荆宇航

作者单位: 哈尔滨工业大学

项目金额: 24万元

中文摘要: 超晶格的界面效应和尺寸效应为调控电子和声子的传输性质提供了新的途径,使构建高效率的热电材料成为可能。石墨烯具有优异的电学和热学性能,在将来的纳米电子、光电子器件中具有极大的应用潜力,因此,对石墨烯超晶格纳米带的热输运性能的研究迫在眉睫。为此,探讨在高热流密度条件下石墨烯的热输运机理,为全面了解石墨烯的热输运性能提供理论基础;采用第一性原理方法搭建及优化扶手椅型/锯齿型石墨烯异质结的界面构型;实现分子动力学模拟与晶格动力学理论计算相结合;进而研究不同的界面构型、同位素掺杂和外力对异质结的热整流特性的影响规律;分析扶手椅型/锯齿型石墨烯超晶格纳米带的热输运机理,探讨其热输运性能与超晶格纳米带的几何尺寸、界面构型以及温度等因素的关系,并对热电性能进行计算分析;最终,给出控制超晶格纳米带热输运性能的方法,构建热电性能优异的扶手椅型/锯齿型石墨烯超晶格纳米带。

中文关键词: 石墨烯;超晶格;热传导;表面效应;分子动力学

英文摘要: The interface and size effects in superlattices can be utilized to tune the electronic and phononic transport properties, which makes it possible to explore high performance thermoelectric materials. Graphene has excellent electrical and thermal properties. Thus, graphene has very high potential for practical applications in nanoscale electronics and optoelectronics. It is necessary and timely to investigate the thermal transport properties of graphene superlattice nanoribbon. Therefore, in order to understand completely the thermal transport properties of graphene, it is expected to study the thermal transport mechanism of graphene under high heat flux. We use first-principles calculations to construct and optimize the interface of armchair/zigzag graphene junction. A combination of molecular dynamics simulations and lattice dynamics calculations is used to study the effects of interface,isotope doping, and applied force on the thermal rectification properties. Study the thermal transport mechanism of armchair/zigzag graphene superlattice nanoribbon. Investigate the effects of interface, size, and temperature on the thermal transport properties of armchair/zigzag graphene superlattice nanoribbons and examine the thermoelectric properties in armchair/zigzag graphene superlattice nanoribbons. Finally, the control

英文关键词: Graphene;Superlattice;Thermal transport;Surface effect;Molecular dynamics

成为VIP会员查看完整内容
0

相关内容

专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
28+阅读 · 2020年8月8日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
69+阅读 · 2019年10月18日
你对插针式耳机感兴趣吗?
ZEALER订阅号
0+阅读 · 2022年3月1日
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Automated Data Augmentations for Graph Classification
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关主题
相关VIP内容
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
28+阅读 · 2020年8月8日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
69+阅读 · 2019年10月18日
相关资讯
你对插针式耳机感兴趣吗?
ZEALER订阅号
0+阅读 · 2022年3月1日
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员