项目名称: 有机/无机杂化钙钛矿光伏器件的电极修饰和性能提高

项目编号: No.61475017

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 侯延冰

作者单位: 北京交通大学

项目金额: 88万元

中文摘要: 有机/无机杂化钙钛矿太阳能电池由于其高转换效率引起太阳能电池界的广泛关注。但是,目前这种电池所用的电极修饰材料的电子收集效率并不是很高,外量子效率相应和太阳光谱匹配不是很好,器件性能还有提升空间。本项目将溶胶光催化合成技术制备的TiO2-Ag纳米棒用于钙钛矿太阳能电池电极修饰,提高电子收集效率。TiO2纳米棒上的银纳米粒子的大小可以通过紫外线照射时间和添加剂精确地控制。由于纳米银的能级位置,TiO2-Ag纳米棒上的银颗粒和电极之间可以形成很好的电子收集通道,使其在保留阻挡扩散空穴的基础上,更有效地收集电子。同时纳米银颗粒产生的表面等离激元效应还可以弥补钙钛矿材料在550-800nm波长范围的外量子效率出现下降问题。本项目将对发生在有机/无机杂化钙钛矿半导体材料的光物理过程进行详细研究,对钙钛矿光功能材料进行电场处理改性研究,对器件进行优化,使制备的太阳能电池的关键技术指标达到实际应用水平

中文关键词: 太阳能电池;TiO-金属复合纳米棒;阴极修饰;钙钛矿

英文摘要: Organic/inorganic hybrids with the perovskite structure have strongly attracted the attention of the photovoltaic community due its achieved high conversion efficiency. In perovskite solar cell, the most used anode modulation material is oxide that acts both collecting electrons and blocking diffusion holes. However, the limited conductivity of oxide reduces the electron collection, furthermore decreases the conversion efficiency. Meanwhile, the external quantum efficiency of solar cells based on perovskite drops in the wavelength range of 500-800nm. Both above mentioned factors affect the achievement of higher conversion efficiency. In this project, an approach of electrode modulation is developed for the sake of improving the collection of electrons, in which TiO2-Ag hybrid nanocomposites, with the structure of single Ag nanoparticle on the individual TiO2 nanorod, is used to modulate cathode of perovskite soalr cells. The size of Ag nanoparticles on TiO2 nanorods can be precisely controlled by varying UV irradiation time and additive. Due to metal nanoparticle can act as a sink of photoinduced charge carrier, one Ag domain on TiO2 nanorod accumulates photoexited electons and provides a preferential site for continuous pathway of electron. Ag-TiO2 nanorods not only block diffusion hole like TiO2 nanoparticles, but also well transport the injected electron from perovskite active layer to cathode. Besides, the incorporation of plasmonic absorption could make up the external quantum efficiency drop in the wavelength range of 500-800nm. According to our plans, the photophyics progresses in provskite active layer and the interfaces will be investigated for the sake of better understanding perovskite semiconductors through the measurements of electric field modulated photoluminescence, transient photocurrent, UPS and so on. The plasmonic enhancement effect of nanoparticles on TiO2 rods will be demonstrated. The electric field treatment of perovskite semiconductors will be applied to the fabrication of perovskite active layer, which will result in the shift of moveable ions. The electric field induced shift of ion can produce the perovskite semicondutor with nonuniform distribution, which will change the photoelectric properties of perovskite matrials. This project is very important to improve the performance of perovskite solar cells.

英文关键词: solar cell;TiO2-Ag nanorod;cathode modulattion;organic/inorganic hyrid perovskite

成为VIP会员查看完整内容
0

相关内容

CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
18+阅读 · 2022年4月18日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
105+阅读 · 2021年8月23日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
专知会员服务
22+阅读 · 2021年3月9日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
29+阅读 · 2020年4月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
18+阅读 · 2022年4月18日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
105+阅读 · 2021年8月23日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
专知会员服务
22+阅读 · 2021年3月9日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
29+阅读 · 2020年4月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员