项目名称: 固态量子存储基本问题的实验研究

项目编号: No.11274289

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李传锋

作者单位: 中国科学技术大学

项目金额: 85万元

中文摘要: 未来实用化量子网络的构建将依赖于量子存储器的实现,利用量子存储器还可获得确定性的单光子源、纠缠光源,为量子计算实现量子比特的时间同步。基于稀土掺杂晶体的固态量子存储器,自2008年首次实现弱光场存储后,实验技术迅速突破,已成为国际上性能最优秀的量子存储器件。依托本课题组已有的连续钛宝石激光器、低温强磁场系统,我们在国内率先开展固态量子存储的实验研究。本项目将利用稳频激光对稀土掺杂晶体吸收谱实现精密操控,在特定组合的低掺杂Nd:YVO4晶体中,配合特定取向的磁场,实现对光场偏振态的存储,为量子中继和量子网络提供实用化的固态量子存储器;并利用光谱烧孔引起的慢光过程,在掺杂晶体中观察Precursor现象。结合我们最近提出的精确测定Precursor速度的实验方案,实验给出色散介质中信息传播的极限速度,从而给极端环境通信和光通信领域的信息传输提供新的思路。

中文关键词: 固态量子存储;量子模拟;量子纠缠;弱测量;量子信道

英文摘要: Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, a tool to convert heralded photons to photons-on-demand and a quantum repeater for long-distance quantum communication. Rare-earth ion-doped solids provide a particular electronic structure that can be seen as a frozen gas of atoms, they have already shown excellent capability to store quantum light for extended periods with high efficiency and a large bandwidth. We will start the experimental research on realization of solid state quantum memory with our frequency stabilized Ti:Sappier laser and Spectromag systems. By utilizing the carefully prepared pairs of Nd:YVO4 crystals under certain magnetic field, we can obtain the reversible transfer of photonic polarization states into collective atomic excitation in a solid-state device, which provide practical solid state quantum memory for quantum networks. We will also investigate the optical precursor phenomenon in slow light crystals. With our recently proposal of accurately measuring the speed of optical precursors, accurate bound

英文关键词: solid state quantum memory;quantum simulation;quantum entanglement;weak measurement;quantum channel

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
30+阅读 · 2021年10月12日
【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
专知会员服务
35+阅读 · 2021年2月20日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
23+阅读 · 2018年10月1日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
30+阅读 · 2021年10月12日
【经典书】半监督学习,524页pdf
专知会员服务
134+阅读 · 2021年8月20日
专知会员服务
35+阅读 · 2021年2月20日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员