项目名称: 芯片离子阱中的离子输运问题研究

项目编号: No.11305262

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 张婷

作者单位: 中国人民解放军国防科学技术大学

项目金额: 22万元

中文摘要: 芯片离子阱是目前最被看好可能实现真正规模化量子计算的物理平台之一,相较于传统线性离子阱,它具有便于制造、利于集成、易于扩展的优点。要在芯片离子阱中实现规模化的量子计算,离子输运是不可或缺的关键步骤。所谓离子输运,是指离子在任意两个地点间的传输,要求是可靠、快速和无运动加热。量子比特具有相干性是量子计算优越性的重要来源,因此编码信息的离子内态在输运过程中必须保持相干性。目前实验上已经可以做到对离子的全二维控制,并且能够保持很低的运动激发,但大部分的研究并未涉及离子内态所受到的影响。本项目拟对芯片离子阱中离子输运过程中内态的相干性保持这一问题开展研究,希望厘清输运过程对离子内态相干性的影响,并据此设计能较好保持内态相干性的新型输运方案。本项目的研究对于量子计算的真正实用化具有十分重要的意义,同时有可能使我国在芯片离子阱量子计算的研究领域后来居上。

中文关键词: 芯片离子阱;离子输运;离子内态;相干性;

英文摘要: Microchip ion trap is one of the most promising physical platforms to realize truly scalable quantum computation. Compared to traditional linear ion trap, its merits are easy to fabricate, favorable to integrate and prone to scale. Transport of ions within microchip ion traps is indispensable component to realize scalable quantum computation. The ultimate goal of ion transport procedures is to reliably move ions between two separate locations in the minimum amount of time while leaving them in the same harmonic motional state that they started in (ideally the ground state). Since the coherence of qubit is an important source of advantage of quantum computation, so the electric states of ion that carry information must keep coherent during the process of transport. Nowadays the full two-dimensional transport of ions with low motional excitation are already experimentally implemented, however, most researches have never involved the effects of transport on the electric state of ions. We are going to study them , then propose new transport protocols that have no or less influence on the coherent electric state. The researches are significant to practical application of quantum computation and hopeful for making our country catch up from behind in the area of quantum computation within microchip ion trap.

英文关键词: microchip ion trap;ion shuttling;electric state of ions;coherence;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
79+阅读 · 2021年10月19日
【干货书】Python科学编程,451页pdf
专知会员服务
128+阅读 · 2021年6月27日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
46+阅读 · 2021年1月7日
专知会员服务
53+阅读 · 2020年12月24日
专知会员服务
50+阅读 · 2020年8月27日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
69+阅读 · 2020年4月7日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
餐饮品牌集体过冬|焦点分析
36氪
0+阅读 · 2022年2月26日
我在快手,从0到1打造“快品牌”
人人都是产品经理
1+阅读 · 2022年1月26日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
变分自编码器VAE:一步到位的聚类方案
PaperWeekly
25+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
57+阅读 · 2021年5月3日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关主题
相关VIP内容
专知会员服务
79+阅读 · 2021年10月19日
【干货书】Python科学编程,451页pdf
专知会员服务
128+阅读 · 2021年6月27日
《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
46+阅读 · 2021年1月7日
专知会员服务
53+阅读 · 2020年12月24日
专知会员服务
50+阅读 · 2020年8月27日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
69+阅读 · 2020年4月7日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
57+阅读 · 2021年5月3日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
26+阅读 · 2018年8月19日
微信扫码咨询专知VIP会员