项目名称: 基于矢量光场的超纠缠量子比特制备及其应用研究

项目编号: No.11204291

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 汪喜林

作者单位: 中国科学技术大学

项目金额: 30万元

中文摘要: 如何进一步高效地扩展纠缠量子比特数目一直都是量子信息领域的一个严峻挑战,迄今为止,已制备的最多的纠缠量子比特是囚禁离子系统中的十四个量子比特;而对于光子而言,目前制备的最多的量子比特数目是十个,是在偏振和动量的超纠缠基础上实现的五光子十比特。为了进一步增加可控纠缠量子比特数,可借助于光子其他自由度的超纠缠,例如轨道角动量。本项目借助矢量光场同时调控光子自旋角动量和轨道角动量这一特性,研究光子偏振和轨道角动量的超纠缠物理规律,力求突破技术瓶颈,实验上实现偏振和轨道角动量超纠缠,旨在更进一步高效扩展纠缠量子比特数目。首先制备双光子四比特纠缠源;其次进一步引入光子动量纠缠,完成双光子三维超纠缠六比特纠缠源的制备;更进一步,纠缠更多的光子数,陆续实现三光子、四光子和五光子的三维超纠缠,最终制备十五比特纠缠源。研究与这类新型超纠缠源相关的一些基本量子力学问题,并探索其在量子光学和量子信息中的应用。

中文关键词: 量子信息;轨道角动量;量子纠缠;量子隐形传态;超纠缠贝尔态测量

英文摘要: It is a great challenge in quantum information processing to efficiently enhance the entangled qubits. To date, the maximum number of entangled qubits was fourteen produced in the ion trap system. However, for the photonic qubits, entangled states of up to ten qubits by the hyper-entanglement of polarization and momentum using five photons have been created. In order to generate more entangled qubits, it is a good proposal to hyper-entangle other freedom of photon, such as orbital angular momentum. The project is focused on this proposal based on the vector fields with spatial inhomogeneous polarization distribution. It is an important nature for vector fields to simultaneously manipulate both the spin angular momentum and the orbital angular momentum of light. With the aid of this nature, the vector fields could be used to generate the hyper-entanglement of polarization and orbital angular momentum, which is very useful for the enlargement of the entangled qubits. The first aim of this project is to generate two-photon four qubits using the hyper-entanglement of polarization and orbital angular momentum. Another more freedom of momentum is hyper-entangled and two-photon six qubits will be created consequently. In the next step, more than two photons will be hyper-entangled between the three freedoms of polariza

英文关键词: quantum information;orbital angular momentum;quantum entanglement;quantum teleportation;hyper-entangled Bell state measurement

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
44+阅读 · 2021年5月24日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
中国高校最强超算!上算引力波,下算光量子
量子位
0+阅读 · 2021年12月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
44+阅读 · 2021年5月24日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员