NIPS21 | 推荐系统+因果推断相关论文集锦

2021 年 11 月 24 日 机器学习与推荐算法
嘿,记得给“机器学习与推荐算法”添加星标

作者:GuoXun

| 单位:阿里巴巴

链接https://zhuanlan.zhihu.com/p/432966519

近期整理了2021年NIPS与推荐系统相关的几篇文章,涉及内容融合、冷启动迁移、跨平台推荐、多重嘈杂反馈下的推荐、AB实验、路线推荐、上下文推荐、社交推荐、迁移数据推荐等。一般来说,NIPS严格契合推荐系统的文章不多,但如果不只看商业推荐系统,考虑广义推荐场景的话,今年就有路径推荐、数据推荐、跨平台推荐等有意思的场景,可以说含金量很高,创意很足。这些非常规场景的推荐,也能给商业推荐系统带来一些启发。

另外,笔者为了进一步优化推荐系统,就因果推断方向,总结了今年NIPS相关的一些论文。因果推断以及因果发现等是未来推荐系统进化以及增长的一个强大的数据挖掘武器,如果能够有效利用因果推断能力,能够为推荐系统的生态良性和实质增长贡献可靠能力。以下是本人整理选取的十几篇今年NIPS因果相关专题的论文,涉及的因果细分方向有:因果发现、因果结构学习、贝叶斯学习、因果强化学习、因果推断、因果深度学习、因果多任务学习、因果对抗学习。我个人认为比较有价值的文章,会标注相应的中文题目,欢迎大家浏览评论。

官网链接:

https://neurips.cc/Conferences/2021/Schedule?type=Poster



推荐系统


On Component Interactions in Two-Stage Recommender Systems

Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus

两阶段推荐系统中的内容交互

Leveraging Distribution Alignment via Stein Path for Cross-Domain Cold-Start Recommendation

Weiming Liu · Jiajie Su · Chaochao Chen · Xiaolin Zheng

通过Stein路径利用分布对齐进行跨域冷启动推荐

Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation

Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li

利用数据稀疏性实现安全的跨平台社交推荐

Curriculum Disentangled Recommendation with Noisy Multi-feedback

Hong Chen · Yudong Chen · Xin Wang · Ruobing Xie · Rui Wang · Feng Xia · Wenwu Zhu

嘈杂多反馈的课程解耦推荐

A/B Testing for Recommender Systems in a Two-sided Marketplace

Preetam Nandy · Divya Venugopalan · Chun Lo · Shaunak Chatterjee

双向市场中推荐系统的A/B测试

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks

Jayant Jain · Vrittika Bagadia · Sahil Manchanda · Sayan Ranu

NeuroMLR:稳健可靠的道路网络路线推荐

Contextual Recommendations and Low-Regret Cutting-Plane Algorithms

Sreenivas Gollapudi · Guru Guruganesh · Kostas Kollias · Pasin Manurangsi · Renato Leme · Jon Schneider

背景推荐和低遗憾的切割平面算法

Minimizing Polarization and Disagreement in Social Networks via Link Recommendation

Liwang Zhu · Qi Bao · Zhongzhi Zhang

通过链接推荐最小化社交网络中的两极分化和分歧

Scalable Neural Data Server: A Data Recommender for Transfer Learning

Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler

可扩展的神经数据服务器:迁移学习的数据推荐



因果发现



因果发现是通过对相关数据进行算法发掘,从而提取因果关系。这在推荐系统的数据分析中十分重要,尤其是特征分析、效果分析。是增长模型的利器,未来需要重点关注。

Iterative Causal Discovery in the Possible Presence of Latent Confounders and Selection Bias

Raanan Yehezkel Rohekar (Intel Labs) · Shami Nisimov (Intel Labs) · Yaniv Gurwicz (Intel Labs) · Gal Novik (Intel Labs)

潜在混杂因素和选择偏差可能存在的迭代因果发现

Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions

Ignavier Ng (Carnegie Mellon University) · Yujia Zheng (Carnegie Mellon University) · Jiji Zhang (Lingnan University) · Kun Zhang (CMU)

改进精确搜索和较弱的假设下的可靠因果发现

Collaborative Causal Discovery with Atomic Interventions

Raghavendra Addanki (College of Information and Computer Science, University of Massachusetts, Amherst) · Shiva Kasiviswanathan (Amazon)

元干预条件下的协同因果发现

BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery

Chris Cundy (Stanford University) · Aditya Grover (University of California, Los Angeles) · Stefano Ermon (Stanford)

BCD网:贝叶斯因果发现的可扩展变分方法


因果结构学习



因果结构学习本质上是通过拓扑结构来描述因果关系,从而更好地从不同尺度来反映因果关系的强度。落地有推荐场景的根因分析,特征有效性根因分析等,因果结构学习是一个重要的方向。

Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models

Matej Zečević (TU Darmstadt) · Devendra Dhami (CS Department, TU Darmstadt, TU Darmstadt) · Athresh Karanam (University of Texas, Dallas) · Sriraam Natarajan (Indiana University) · Kristian Kersting (TU Darmstadt)

介入和积网络:可处理的概率模型的因果推理

Matching a Desired Causal State via Shift Interventions

Vicky Zhang (Massachusetts Institute of Technology) · Chandler Squires (Massachusetts Institute of Technology) · Caroline Uhler (Massachusetts Institute of Technology)

通过Shift干预匹配期望的因果状态

Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables

Jakob Runge (German Aerospace Center)

具有隐藏变量的因果图模型中最优平差集的充分必要图条件

Instance-dependent Label-noise Learning under a Structural Causal Model

Yu Yao (University of Sydney) · Tongliang Liu (The University of Sydney) · Mingming Gong (University of Melbourne) · Bo Han (HKBU / RIKEN) · Gang Niu (RIKEN) · Kun Zhang (CMU)

结构因果模型下的实例依赖标记噪声学习

Causal Effect Inference for Structured Treatments

Jean Kaddour (University College London) · Yuchen Zhu (University College London) · Qi Liu (University of Oxford) · Matt Kusner (University College London) · Ricardo Silva (ucl.ac.uk)

结构恢复的因果关系推理

Learning Causal Semantic Representation for Out-of-Distribution Prediction

Chang Liu (Microsoft Research Asia) · Xinwei Sun (Peking University) · Jindong Wang (Microsoft Research Asia) · Haoyue Tang (Tsinghua University, Tsinghua University) · Tao Li (Peking University) · Tao Qin (Microsoft Research) · Wei Chen (Microsoft Research) · Tie-Yan Liu (Microsoft Research)

非分布预测的因果语义表示学习

Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias

Sina Akbari (EPFL (École Polytechnique Fédérale de Lausanne)) · Ehsan Mokhtarian (Swiss Federal Institute of Technology Lausanne) · AmirEmad Ghassami (Johns Hopkins University) · Negar Kiyavash (École Polytechnique Fédérale de Lausanne)

存在潜在变量和选择偏差的递归因果结构学习

Learning latent causal graphs via mixture oracles

Bohdan Kivva (University of Chicago) · Goutham Rajendran (University of Chicago) · Pradeep Ravikumar (Carnegie Mellon University) · Bryon Aragam (University of Chicago)

A Causal Lens for Controllable Text Generation

Zhiting Hu (Carnegie Mellon University) · Li Erran Li (AWS AI, Amazon)

Statistical Undecidability in Linear, Non-Gaussian Causal Models in the Presence of Latent Confounders

Konstantin Genin (University of Tübingen)

Identification of Partially Observed Linear Causal Models: Graphical Conditions for the Non-Gaussian and Heterogeneous Cases

Jeffrey Adams (University of Copenhagen) · Niels Hansen (University of Copenhagen) · Kun Zhang (CMU)

Answering Complex Causal Queries With the Maximum Causal Set Effect

Zachary Markovich (MIT)



贝叶斯相关



贝叶斯是因果方向的一种基础工具。借此,我们可以为我们的方法找到理论依据和优化工具。

Dynamic Causal Bayesian Optimization

Virginia Aglietti (University of Warwick) · Neil Dhir (Alan Turing Institute) · Javier González (Microsoft Research Cambridge) · Theodoros Damoulas (University of Warwick)

动态因果贝叶斯优化

BayesIMP: Uncertainty Quantification for Causal Data Fusion

Siu Lun Chau (University of Oxford) · Jean-Francois Ton (University of Oxford) · Javier González (Microsoft Research Cambridge) · Yee Teh (DeepMind) · Dino Sejdinovic (University of Oxford)

因果数据融合的不确定性量化



因果强化学习



强化学习和因果关系的结合是一个较热的方向,也是强化学习当中反对大规模数据暴力强化学习的有力理论支撑。我本人同样反对暴力强化学习,既只依赖数据规模、数据多样性就能依靠现有深度学习方法解决强化学习场景的问题。

Actively Identifying Causal Effects with Latent Variables Given Only Response

Causal Bandits with Unknown Graph Structure

Yangyi Lu (University of Michigan) · Amirhossein Meisami (University of Michigan) · Ambuj Tewari (University of Michigan)

通过具有未知图结构的因果器来积极识别潜在变量的因果效应

Provably Efficient Causal Reinforcement Learning with Confounded Observational Data

Lingxiao Wang (Northwestern University) · Zhuoran Yang (Princeton) · Zhaoran Wang (Princeton University)

Asymptotically Best Causal Effect Identification with Multi-Armed Bandits

Alan Malek (DeepMind) · Silvia Chiappa (DeepMind)

Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation

Liyuan Xu (Gatsby Computational Neuroscience Unit) · Heishiro Kanagawa (Gatsby Unit, University College London) · Arthur Gretton (Gatsby Unit, UCL)




因果推断



这个方向是因果推断方向,相对基础的方向,比较侧重于数据本身与因果的关系。

Causal Identification with Matrix Equations

Sanghack Lee (Penn State University) · Elias Bareinboim (Columbia University)

Recovering Latent Causal Factor for Generalization to Distributional Shifts

Xinwei Sun (Peking University) · Botong Wu (Peking University) · Xiangyu Zheng (Peking University) · Chang Liu (Microsoft Research Asia) · Wei Chen (Microsoft Research) · Tao Qin (Microsoft Research) · Tie-Yan Liu (Microsoft Research)

Actively Identifying Causal Effects with Latent Variables Given Only Response Variable Observable

Tian-Zuo Wang (Nanjing University) · Zhi-Hua Zhou (Nanjing University)

Matching a Desired Causal State via Shift Interventions

Vicky Zhang (Massachusetts Institute of Technology) · Chandler Squires (Massachusetts Institute of Technology) · Caroline Uhler (Massachusetts Institute of Technology)

A Critical Look at the Consistency of Causal Estimation with Deep Latent Variable Models

Severi Rissanen (Aalto University) · Pekka Marttinen (Aalto University)

DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative NetworksBoris van Breugel (University of Cambridge) · Trent Kyono (UCLA) · Jeroen Berrevoets (University of Cambridge) · Mihaela van der Schaar (University of Cambridge)

MIRACLE: Causally-Aware Imputation via Learning Missing Data MechanismsTrent Kyono (UCLA) · Yao Zhang (University of Cambridge) · Alexis Bellot (Columbia University) · Mihaela van der Schaar (University of Cambridge)

Sequential Causal Imitation Learning with Unobserved Confounders

Daniel Kumor (Purdue University) · Junzhe Zhang (Columbia University) · Elias Bareinboim (Columbia University)

Invariant Causal Imitation Learning for Generalizable Policies

Ioana Bica (University of Oxford) · Daniel Jarrett (University of Cambridge) · Mihaela van der Schaar (University of Cambridge)

Learning Generalized Gumbel-max Causal Mechanisms

Guy Lorberbom (Technion) · Daniel Johnson (Google Research, Brain Team) · Chris Maddison (Oxford) · Daniel Tarlow (Microsoft Research Cambridge) · Tamir Hazan (Technion)

Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning

Jongjin Park (KAIST) · Younggyo Seo (KAIST) · Chang Liu (Microsoft Research Asia) · Li Zhao (Microsoft Research) · Tao Qin (Microsoft Research) · Jinwoo Shin (KAIST) · Tie-Yan Liu (Microsoft Research)



因果深度学习



通过深度学习方法来解决因果相关问题,也是近年因果问题的主流做法。

Comprehensive Knowledge Distillation with Causal Intervention

Xiang Deng (State University of New York at Binghamton) · Zhongfei Zhang (Binghamton University)

知识蒸馏与因果干预综合

Causal Abstractions of Neural Networks

Atticus Geiger (Stanford University) · Hanson H Lu (Stanford University) · Thomas F Icard (Stanford University) · Christopher Potts (Stanford University)

How Well do Feature Visualizations Support Causal Understanding of CNN Activations?

Roland S. Zimmermann (University of Tübingen, International Max Planck Research School for Intelligent Systems) · Judy Borowski (University of Tuebingen) · Robert Geirhos (University of Tübingen) · Matthias Bethge (University of Tübingen) · Thomas Wallis (TU Darmstadt) · Wieland Brendel (AG Bethge, University of Tübingen)

Causal Navigation by Continuous-time Neural Networks

Charles J Vorbach (Massachusetts Institute of Technology) · Ramin Hasani (MIT) · Alexander Amini (MIT) · Mathias Lechner (IST Austria) · Daniela Rus (Massachusetts Institute of Technology)

Causal Inference for Event Pairs in Multivariate Point Processes

Tian Gao (IBM Research AI) · Dharmashankar Subramanian (IBM Research) · Debarun Bhattacharjya (IBM Research) · Xiao Shou (Rensselaer Polytechnic Institute) · Nicholas Mattei (Tulane University) · Kristin P Bennett (Rensselaer Poly. Inst.)

A Topological Perspective on Causal Inference

Duligur Ibeling (Stanford University) · Thomas F Icard (Stanford University)

Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Maximilian Seitzer (Max Planck Institute for Intelligent Systems, Max-Planck Institute) · Bernhard Schölkopf (MPI for Biological Cybernetics) · Georg Martius (IST Austria)

The Causal-Neural Connection: Expressiveness, Learnability, and Inference

Kevin M Xia (Columbia University) · Kai-Zhan Lee (Columbia University) · Yoshua Bengio (University of Montreal) · Elias Bareinboim (Columbia University)




因果对抗学习



机器学习的对抗场景无处不在,因果推断场景也不例外。因果学习对对抗数据的敏感度更高,很容易出现因果翻转的现象,这是我们利用因果工具的时候,尤其要注意的。

Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy to Game

Alexander Reisach (University of Amsterdam) · Christof Seiler (Maastricht University) · Sebastian Weichwald (University of Copenhagen)

当心模拟DAG!因果发现基准可能很容易被利用



因果多任务学习



多任务学习是推荐系统场景中经常要面对的问题,借助因果工具来进行多任务学习是一个不错的尝试。

Multi-task Learning of Order-Consistent Causal Graphs

Xinshi Chen (Georgia Institution of Technology) · Haoran Sun (Georgia Institute of Technology) · Caleb Ellington (School of Computer Science, Carnegie Mellon University) · Eric Xing (Petuum Inc. / Carnegie Mellon University) · Le Song (Georgia Institute of Technology)

序一致因果图的多任务学习

欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

基于双塔结构的推荐模型总结

基于深度强化学习的推荐算法论文集锦
基于双塔结构的推荐模型总结

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇
登录查看更多
2

相关内容

近期必读的六篇 ICLR 2021【推荐系统】相关投稿论文
专知会员服务
47+阅读 · 2020年10月13日
近期必读的五篇KDD 2020【推荐系统 (RS) 】相关论文
专知会员服务
65+阅读 · 2020年8月11日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
70+阅读 · 2020年4月7日
专知会员服务
88+阅读 · 2020年1月20日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
63+阅读 · 2020年1月10日
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
WWW2022推荐系统/计算广告论文集锦
机器学习与推荐算法
1+阅读 · 2022年3月2日
WSDM22推荐系统论文集锦,GNN推荐依然火热~
图与推荐
2+阅读 · 2022年1月20日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
AAAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年1月10日
近期推荐系统冷启动顶会论文集锦
机器学习与推荐算法
3+阅读 · 2021年12月22日
NIPS'21论文合集 | 推荐系统新热点,因果建模!
图与推荐
0+阅读 · 2021年11月21日
CIKM2021推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2021年10月20日
Recsys2021 | 推荐系统论文整理与导读
机器学习与推荐算法
1+阅读 · 2021年10月19日
RecSys2021推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2021年8月23日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
近期必读的六篇 ICLR 2021【推荐系统】相关投稿论文
专知会员服务
47+阅读 · 2020年10月13日
近期必读的五篇KDD 2020【推荐系统 (RS) 】相关论文
专知会员服务
65+阅读 · 2020年8月11日
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
70+阅读 · 2020年4月7日
专知会员服务
88+阅读 · 2020年1月20日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
63+阅读 · 2020年1月10日
相关资讯
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
WWW2022推荐系统/计算广告论文集锦
机器学习与推荐算法
1+阅读 · 2022年3月2日
WSDM22推荐系统论文集锦,GNN推荐依然火热~
图与推荐
2+阅读 · 2022年1月20日
WSDM2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年1月19日
AAAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年1月10日
近期推荐系统冷启动顶会论文集锦
机器学习与推荐算法
3+阅读 · 2021年12月22日
NIPS'21论文合集 | 推荐系统新热点,因果建模!
图与推荐
0+阅读 · 2021年11月21日
CIKM2021推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2021年10月20日
Recsys2021 | 推荐系统论文整理与导读
机器学习与推荐算法
1+阅读 · 2021年10月19日
RecSys2021推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2021年8月23日
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员