基础|人脸识别的十个关键技术组成及原理!

2017 年 7 月 27 日 全球人工智能

欢迎加入AISDK开发者社群>>

人脸识别技术已成为纳入研发参考的、给人们带来高质量生活的又一科技解决途径。日常生活中,人脸识别的应用已经常见,那么你知道它是如何做到如此智能吗?下面,我们就带大家了解人脸识别涉及的十个关键技术。


1、人脸检测(Face Detection):是检测出图像中人脸所在位置的一项技术。


人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。


常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、或“人脸数量上限”的方式来加速算法。

人脸检测结果举例(绿色框为人脸检测结果)


2、人脸配准(Face Alignment):是定位出人脸上五官关键点坐标的一项技术。


人脸配准算法的输入是“一张人脸图片”加“人脸坐标框”,输出五官关键点的坐标序列。五官关键点的数量是预先设定好的一个固定数值,可以根据不同的语义来定义(常见的有5点、68点、90点等等)。


当前效果的较好的一些人脸配准技术,基本通过深度学习框架实现,这些方法都是基于人脸检测的坐标框,按某种事先设定规则将人脸区域扣取出来,缩放的固定尺寸,然后进行关键点位置的计算。因此,若不计入图像缩放过程的耗时,人脸配准算法是可以计算量固定的过程。另外,相对于人脸检测,或者是后面将提到的人脸提特征过程,人脸配准算法的计算耗时都要少很多。

人脸配准结果举例(右图中的绿色点位人脸配准结果)


3、人脸属性识别(Face Attribute):是识别出人脸的性别、年龄、姿态、表情等属性值的一项技术。


一般的人脸属性识别算法的输入是“一张人脸图”和“人脸五官关键点坐标”,输出是人脸相应的属性值。人脸属性识别算法一般会根据人脸五官关键点坐标将人脸对齐(旋转、缩放、扣取等操作后,将人脸调整到预定的大小和形态),然后进行属性分析。


常规的人脸属性识别算法识别每一个人脸属性时都是一个独立的过程,即人脸属性识别只是对一类算法的统称,性别识别、年龄估计、姿态估计、表情识别都是相互独立的算法。但最新的一些基于深度学习的人脸属性识别也具有一个算法同时输入性别、年龄、姿态等属性值的能力。

人脸属性识别过程(最右侧文字为属性识别结果)


4、人脸提特征(Face Feature Extraction):是将一张人脸图像转化为一串固定长度的数值的过程。这个数值串被称为“人脸特征(Face Feature)”,具有表征这个人脸特点的能力。


人脸提特征过程的输入也是 “一张人脸图”和“人脸五官关键点坐标”,输出是人脸相应的一个数值串(特征)。人脸提特征算法都会根据人脸五官关键点坐标将人脸对齐预定模式,然后计算特征。


近几年来,深度学习方法基本统治了人脸提特征算法,这些算法都是固定时长的算法。早前的人脸提特征模型都较大,速度慢,仅使用于后台服务。但最新的一些研究,可以在基本保证算法效果的前提下,将模型大小和运算速度优化到移动端可用的状态。

人脸提特征过程(最右侧数值串为“人脸特征”)


5人脸比对(Face Compare):是衡量两个人脸之间相似度的算法。


人脸比对算法的输入是两个人脸特征(注:人脸特征由前面的人脸提特征算法获得),输出是两个特征之间的相似度。人脸验证、人脸识别、人脸检索都是在人脸比对的基础上加一些策略来实现。相对人脸提特征过程,单次的人脸比对耗时极短,几乎可以忽略。


基于人脸比对可衍生出人脸验证(Face Verification)、人脸识别(Face Recognition)、人脸检索(Face Retrieval)、人脸聚类(Face Cluster)等算法。

人脸对比过程(右侧的相似度为人脸比对输出的结果)


6、人脸验证(Face Verification):是判定两个人脸图是否为同一人的算法。


它的输入是两个人脸特征,通过人脸比对获得两个人脸特征的相似度,通过与预设的阈值比较来验证这两个人脸特征是否属于同一人(即相似度大于阈值,为同一人;小于阈值为不同)。

人脸验证过程说明(最右侧“是同一人”为人脸验证的输出)


7、人脸识别(Face Recognition):是识别出输入人脸图对应身份的算法。


它的输入一个人脸特征,通过和注册在库中N个身份对应的特征进行逐个比对,找出“一个”与输入特征相似度最高的特征。将这个最高相似度值和预设的阈值相比较,如果大于阈值,则返回该特征对应的身份,否则返回“不在库中”。

人脸识别过程(右侧身份“jason”为人脸识别结果)


8、人脸检索:是查找和输入人脸相似的人脸序列的算法。


人脸检索通过将输入的人脸和一个集合中的说有人脸进行比对,根据比对后的相似度对集合中的人脸进行排序。根据相似度从高到低排序的人脸序列即使人脸检索的结果。



人脸检索过程(右侧绿框内排序序列为检索结果)


9、人脸聚类(Face Cluster):是将一个集合内的人脸根据身份进行分组的算法。


人脸聚类也通过将集合内所有的人脸两两之间做人脸比对,再根据这些相似度值进行分析,将属于同一个身份的人划分到一个组里。


在没有进行人工身份标注前,只知道分到一个组的人脸是属于同一个身份,但不知道确切身份。另外假设集合中有N个人脸,那么人脸聚类的算法复杂度为O(N2)



人脸聚类过程(右侧绿框内按身份的分组结果为聚类结果)


10、人脸活体(FaceLiveness):是判断人脸图像是来自真人还是来自攻击假体(照片、视频等)的方法。


和前面所提到的人脸技术相比,人脸活体不是一个单纯算法,而是一个问题的解法。这个解法将用户交互和算法紧密结合,不同的交互方式对应于完全不同的算法。鉴于方法的种类过于繁多,这里只介绍“人脸活体”的概念,不再展开。

热门文章推荐

基础|深度学习入门必须理解这25个概念

周志华提出多类最优边界分配机mcODM,代替支持向量机

重磅|腾讯公布首批25个人工智能加速器项目名单!

国家战略:国务院发布“新一代人工智能发展规划”

京东发布登月机器学习平台:为第四次零售革命输出AI能力

重磅|中国870家的AI公司融资905亿人民币!

浙大女科学家解密:从最后一面逆袭第一名!

资料|麻省理工课程:深度学习数据基础(PPT)

推荐| 40张动态图详解全部传感器关注原理!

警惕中国人工智能有一只推荐算法叫:莆田系算法!

登录查看更多
5

相关内容

人脸检测(Face Detection)是一种在任意数字图像中找到人脸的位置和大小的计算机技术。它可以检测出面部特征,并忽略诸如建筑物、树木和身体等其他任何东西。有时候,人脸检测也负责找到面部的细微特征,如眼睛、鼻子、嘴巴等的精细位置。
【2020新书】使用高级C# 提升你的编程技能,412页pdf
专知会员服务
58+阅读 · 2020年6月26日
最新《深度学习自动驾驶》技术综述论文,28页pdf
专知会员服务
154+阅读 · 2020年6月14日
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
58+阅读 · 2020年1月3日
中文知识图谱构建技术以及应用的综述
专知会员服务
313+阅读 · 2019年10月19日
人脸识别技术全面总结:从传统方法到深度学习
物联网智库
4+阅读 · 2019年2月15日
值得收藏丨一文读懂人脸识别技术
物联网智库
4+阅读 · 2019年2月11日
AI综述专栏 | 人脸检测算法综述
人工智能前沿讲习班
6+阅读 · 2018年9月10日
深扒人脸识别60年技术发展史
炼数成金订阅号
3+阅读 · 2018年6月20日
一文综述人脸检测算法(附资源)
数据派THU
7+阅读 · 2018年5月8日
【机器视觉】人脸检测与识别总结
产业智能官
7+阅读 · 2017年12月6日
人脸对齐之GBDT(ERT)算法解读
计算机视觉战队
7+阅读 · 2017年12月6日
人脸检测与识别总结
计算机视觉战队
21+阅读 · 2017年11月29日
推荐|研究人脸识别技术必须知道的十个基本概念
全球人工智能
18+阅读 · 2017年9月26日
揭秘人脸识别的十大关键技术
全球创新论坛
6+阅读 · 2017年9月6日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
4+阅读 · 2018年12月20日
Arxiv
4+阅读 · 2018年7月4日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
6+阅读 · 2018年2月6日
VIP会员
相关VIP内容
相关资讯
人脸识别技术全面总结:从传统方法到深度学习
物联网智库
4+阅读 · 2019年2月15日
值得收藏丨一文读懂人脸识别技术
物联网智库
4+阅读 · 2019年2月11日
AI综述专栏 | 人脸检测算法综述
人工智能前沿讲习班
6+阅读 · 2018年9月10日
深扒人脸识别60年技术发展史
炼数成金订阅号
3+阅读 · 2018年6月20日
一文综述人脸检测算法(附资源)
数据派THU
7+阅读 · 2018年5月8日
【机器视觉】人脸检测与识别总结
产业智能官
7+阅读 · 2017年12月6日
人脸对齐之GBDT(ERT)算法解读
计算机视觉战队
7+阅读 · 2017年12月6日
人脸检测与识别总结
计算机视觉战队
21+阅读 · 2017年11月29日
推荐|研究人脸识别技术必须知道的十个基本概念
全球人工智能
18+阅读 · 2017年9月26日
揭秘人脸识别的十大关键技术
全球创新论坛
6+阅读 · 2017年9月6日
相关论文
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
4+阅读 · 2018年12月20日
Arxiv
4+阅读 · 2018年7月4日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
6+阅读 · 2018年2月6日
Top
微信扫码咨询专知VIP会员