深度学习如何异常检测?WSDM2021「深度学习异常检测」这份教程讲述12类方法,附111页ppt与论文

2021 年 3 月 10 日 专知

2021年第14届国际网络搜索与数据挖掘会议WSDM将在2021年3月8日到12日于线上举行。今年此次会议共收到了603份有效投稿,最终录取篇数为112篇,录取率为18.6%。在WSDM上,有关于《深度学习异常检测》教程值得关注!



https://sites.google.com/site/gspangsite/wsdm21_tutorial


在本教程中,我们旨在全面介绍专门为异常检测(深度异常检测)而设计的深度学习技术的进展。


深度学习在转换许多数据挖掘和机器学习任务方面取得了巨大的成功,但由于异常具有一些独特的特征,如罕见性、异质性、无限性以及收集大规模异常数据的高昂成本,目前流行的深度学习技术并不适用于异常检测。


通过本教程,读者将对该领域有一个系统的概述,了解目前最先进的12种不同类型的深度异常检测方法的主要要点、目标函数、基本假设、优缺点,并认识到其在不同领域的广泛适用性。我们还讨论了当前的深度异常检测方法可以从多个不同的角度解决和展望该领域的挑战。


任何对深度学习、异常/离群值/新奇检测、分布外检测、带有有限标记数据的表示学习以及自我监督表示学习感兴趣的读者,都会发现参加本教程非常有帮助。


金融、网络安全、医疗保健领域的研究人员和从业者也会发现该教程在实践中有帮助。




目录内容:

  1. 概述 Overview of challenges and methods  (30 min)

  • Introduction to anomaly detection

  • Problems and challenges

  • Deep vs. shallow methods

  • Overview of deep anomaly detection approaches

  1. 方法 Methods (100 min, including 10-minute break)

  • The modeling perspective

+ Deep learning for feature extraction

+ Learning feature representations of normality

– Generic normality feature learning

∗ Autoencoder-based approaches

∗ Generative adversarial network-based approaches

∗ Predictability modeling approaches

∗ Self-supervised classification approaches

– Anomaly measure-dependent feature learning

∗ Feature learning for distance-based measure

∗ Feature learning for one-class classification measure

∗ Feature learning for clustering-based measure

+ End-to-end anomaly score learning

– Ranking models

– Prior-driven models

– Softmax likelihood models

– End-to-end one-class classification models

  • The supervision information perspective

+ Unsupervised approach

+ Semi-supervised approach

+ Weakly-supervised approach

  • Implementation and Evaluation

  1. 结论 Conclusions and future opportunities (30 min)

  • Summary of the methods

  • Six possible directions for future research

+ Exploring new anomaly-supervisory signals

+ Deep weakly-supervised anomaly detection

+ Large-scale normality learning

+ Deep detection of complex anomalies

+ Interpretable and actionable deep anomaly detection

+ Novel applications and settings


讲者:




异常检测,几十年来一直是各个研究领域中一个持续而活跃的研究领域。但仍然有一些独特的问题、复杂性和挑战需要先进的方法。近年来,将深度学习应用于异常检测(即深度异常检测)已经成为关键方向。本文回顾了深度异常检测方法的研究进展,并对检测方法进行了分类,包括3个高级类别和11个细粒度类别。本文回顾了检测方法的主要intuitions、目标函数、基本假设、优势和劣势,并讨论了他们如何应对上述挑战。并且进一步讨论了一系列未来可能的机遇和应对挑战的新观点。



异常检测,又称离群值检测或新颖性检测,是指检测与大多数数据实例显著偏离的数据实例的过程。几十年来,异常探测一直是一个活跃的研究领域,早期的探测可以追溯到20世纪60年代的[52]。由于在风险管理、合规、安全、金融监控、健康和医疗风险、人工智能安全等广泛领域的需求和应用日益增长,异常检测在数据挖掘、机器学习、计算机视觉和统计等各个领域发挥着越来越重要的作用。近年来,深度学习在学习高维数据、时间数据、空间数据和图形数据等复杂数据的表达表示方面显示出了巨大的能力,推动了不同学习任务的边界。深度学习异常检测,简称深度异常检测,目的是通过神经网络学习特征表示或异常分数来进行异常检测。大量的深度异常检测方法已经被引入,在解决各种现实世界应用中具有挑战性的检测问题上,表现出比传统异常检测显著更好的性能。这项工作旨在对这一领域进行全面调研。我们首先讨论了异常检测的问题本质和主要的未解决的挑战,然后系统地回顾了当前的深度方法及其解决这些挑战的能力,最后提出了一些未来的机会。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DLA” 就可以获取深度学习如何异常检测?WSDM2021「深度学习异常检测」这份教程讲述12类方法,附111页ppt与论文》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
8

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
【WSDM2021-Ttutorial】深度学习异常检测,111页ppt
专知会员服务
153+阅读 · 2021年3月10日
【WSDM2021-Tutorial】偏见感知推荐系统的进展,134页ppt
专知会员服务
49+阅读 · 2021年3月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《深度学习视频异常检测》2020综述论文,21页pdf
专知会员服务
84+阅读 · 2020年9月30日
专知会员服务
108+阅读 · 2020年8月28日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
WSDM 2020教程《深度贝叶斯数据挖掘》,附257页PPT下载
专知会员服务
156+阅读 · 2020年2月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
10页MIT可解释机器学习最新论文
专知
5+阅读 · 2019年2月22日
【WWW2018】网络表示学习Tutorial(附下载)
专知
11+阅读 · 2018年4月25日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
【WSDM2021-Ttutorial】深度学习异常检测,111页ppt
专知会员服务
153+阅读 · 2021年3月10日
【WSDM2021-Tutorial】偏见感知推荐系统的进展,134页ppt
专知会员服务
49+阅读 · 2021年3月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《深度学习视频异常检测》2020综述论文,21页pdf
专知会员服务
84+阅读 · 2020年9月30日
专知会员服务
108+阅读 · 2020年8月28日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
WSDM 2020教程《深度贝叶斯数据挖掘》,附257页PPT下载
专知会员服务
156+阅读 · 2020年2月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Top
微信扫码咨询专知VIP会员