TensorFlow Lite发布重大更新!支持移动GPU、推断速度提升4-6倍

2019 年 1 月 19 日 量子位
乾明 发自 凹非寺
量子位 出品 | 公众号 QbitAI

TensorFlow用于移动设备的框架TensorFlow Lite发布重大更新,支持开发者使用手机等移动设备的GPU来提高模型推断速度。

在进行人脸轮廓检测的推断速度上,与之前使用CPU相比,使用新的GPU后端有不小的提升。在Pixel 3和三星S9上,提升程度大概为4倍,在iPhone 7上有大约有6倍。

为什么要支持GPU?

众所周知,使用计算密集的机器学习模型进行推断需要大量的资源。

但是移动设备的处理能力和功率都有限。虽然TensorFlow Lite提供了不少的加速途径,比如将机器学习模型转换成定点模型,但总是会在模型的性能或精度上做出让步。

而将GPU作为加速原始浮点模型的一种选择,不会增加量化的额外复杂性和潜在的精度损失。

在谷歌内部,几个月来一直在产品中使用GPU后端做测试。结果证明,的确可以加快复杂网络的推断速度。

在Pixel 3的人像模式(Portrait mode)中,与使用CPU相比,使用GPU的Tensorflow Lite,用于抠图/背景虚化的前景-背景分隔模型加速了4倍以上。新深度估计(depth estimation)模型加速了10倍以上。

在能够为视频增加文字、滤镜等特效的YouTube Stories和谷歌的相机AR功能Playground Stickers中,实时视频分割模型在各种手机上的速度提高了5-10倍。

对于不同的深度神经网络模型,使用新GPU后端,通常比浮点CPU快2-7倍。对4个公开模型和2个谷歌内部模型进行基准测试的效果如下:

使用GPU加速,对于更复杂的神经网络模型最为重要,比如密集的预测/分割或分类任务。

在相对较小的模型上,加速的效果就没有那么明显了,使用CPU反而有利于避免内存传输中固有的延迟成本。

如何使用?

安卓设备(用Java)中,谷歌已经发布了完整的Android Archive (AAR) ,其中包括带有GPU后端的TensorFlow Lite。

你可以编辑Gradle文件,用AAR替代当前的版本,并将下面的代码片段,添加到Java初始化代码中。

// Initialize interpreter with GPU delegate.
GpuDelegate delegate = new GpuDelegate();
Interpreter.Options options = (new Interpreter.Options()).addDelegate(delegate);
Interpreter interpreter = new Interpreter(model, options);

// Run inference.
while (true) {
  writeToInputTensor(inputTensor);
  interpreter.run(inputTensor, outputTensor);
  readFromOutputTensor(outputTensor);
}

// Clean up.
delegate.close();

在iOS设备(用C++)中,要先下载二进制版本的TensorFlow Lite。

然后更改代码,在创建模型后调用ModifyGraphWithDelegate ( )。

// Initialize interpreter with GPU delegate.
std::unique_ptr<Interpreter> interpreter;
InterpreterBuilder(model, op_resolver)(&interpreter);
auto* delegate = NewGpuDelegate(nullptr);  // default config
if (interpreter->ModifyGraphWithDelegate(delegate) != kTfLiteOk) return false;

// Run inference.
while (true) {
  WriteToInputTensor(interpreter->typed_input_tensor<float>(0));
  if (interpreter->Invoke() != kTfLiteOk) return false;
  ReadFromOutputTensor(interpreter->typed_output_tensor<float>(0));
}

// Clean up.
interpreter = nullptr;
DeleteGpuDelegate(delegate);

(更多的使用教程,可以参见TensorFlow的官方教程,传送门在文末)

还在发展中

当前发布的,只是TensorFlow Lite的开发者预览版。

新的GPU后端,在安卓设备上利用的是OpenGL ES 3.1 Compute Shaders,在iOS上利用的是Metal Compute Shaders。

能够支持的GPU操作并不多。有:

ADD v1、AVERAGE_POOL_2D v1、CONCATENATION v1、CONV_2D v1、DEPTHWISE_CONV_2D v1-2、FULLY_CONNECTED v1、LOGISTIC v1

MAX_POOL_2D v1、MUL v1、PAD v1、PRELU v1、RELU v1、RELU6 v1、RESHAPE v1、RESIZE_BILINEAR v1、SOFTMAX v1、STRIDED_SLICE v1、SUB v1、TRANSPOSE_CONV v1

TensorFlow官方表示,未来将会扩大操作范围、进一步优化性能、发展并最终确定API。

完整的开源版本,将会在2019年晚些时候发布。

传送门

使用教程:

https://www.tensorflow.org/lite/performance/gpu

项目完整文档:

https://www.tensorflow.org/lite/performance/gpu_advanced

博客地址:

https://medium.com/tensorflow/tensorflow-lite-now-faster-with-mobile-gpus-developer-preview-e15797e6dee7

请投“量子位”一票

加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !



登录查看更多
0

相关内容

最新《自动微分手册》77页pdf
专知会员服务
100+阅读 · 2020年6月6日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
119+阅读 · 2020年5月6日
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
29+阅读 · 2020年3月5日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
Tensorflow框架是如何支持分布式训练的?
AI100
9+阅读 · 2019年3月26日
TensorFlow Lite 2019 年发展蓝图
谷歌开发者
6+阅读 · 2019年3月12日
官方解读:TensorFlow 2.0 新的功能特性
云头条
3+阅读 · 2019年1月23日
PyTorch 1.0 稳定版正式发布!
新智元
3+阅读 · 2018年12月8日
谷歌发布TensorFlowLite,用半监督跨平台快速训练ML模型!
全球人工智能
5+阅读 · 2017年11月15日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
Tensorflow框架是如何支持分布式训练的?
AI100
9+阅读 · 2019年3月26日
TensorFlow Lite 2019 年发展蓝图
谷歌开发者
6+阅读 · 2019年3月12日
官方解读:TensorFlow 2.0 新的功能特性
云头条
3+阅读 · 2019年1月23日
PyTorch 1.0 稳定版正式发布!
新智元
3+阅读 · 2018年12月8日
谷歌发布TensorFlowLite,用半监督跨平台快速训练ML模型!
全球人工智能
5+阅读 · 2017年11月15日
Top
微信扫码咨询专知VIP会员