如何利用少样本无监督学习实现高质量图像转换 | 公开课

2019 年 8 月 14 日 智东西

在完结26场超级公开课NVIDIA专场之后,自7月起,智东西公开课联合NVIDIA研究院推出了NVIDIA研究院系列,共计四讲。


第一讲是生成式对抗网络GAN公开课,于7月25日开讲,由NVIDIA研究院首席研究科学家刘洺堉老师在美国远程主讲,主题为《如何利用生成式对抗网络GAN实现“AI神笔马良”GauGAN的神奇效果》,让我们了解到了生成式对抗网络GAN在图像合成中的神奇效果。


生成图像建模是刘洺堉老师近年来的研究重点,工作包括pix2pixHD,vid2vid,GauGAN / SPADE,UNIT,MUNIT和FUNIT。


8月20日13点,刘洺堉老师将继续带来第二讲——无监督学习公开课。他将解析无监督学习在图像转换领域的创新和应用,主题为《如何利用少样本无监督学习实现高质量图像转换》,内容包括无监督学习的发展现状、无监督学习在图像转换领域的的应用和创新、少样本无监督图像转换FUNIT模型的实现和应用。

图像到图像转换方法可以应用在很多计算机视觉任务中,比如图像分割、图像修复、图像着色、图像超分辨率、图像风格(场景)变换等都属于图像到图像转换的应用范畴。那到底什么是图像到图像的转换呢?

我们看到一只站着的老虎时,自然很容易就能想象出它躺着的样子,这就是图像到图像的转换,即将一个场景的可能表示转换成另一个场景。然而我们能够想像出来是因为我们拥有联想的能力,可以根据其他动物平躺的姿势想像出老虎平躺的样子,然而对于机器来说就不那么简单了。

现有的基于无监督学习方法的图像到图像转换模型,依赖于大量的训练数据,并且模型转换的对象必须是训练数据中已有的对象类型,达不到想像创造的能力。2019年5月,NVIDIA研究院提出了一种基于少量样本的无监督学习图像到图像转换模型,仅通过少量样本的训练,即可实现图像到图像的转换,并且可以生成训练数据中不存在的类别,达到"一图生万物"的效果。


开课时间

时间:8月20日13点

地点:智东西公开课直播间


讲师介绍

刘洺堉,NVIDIA研究院首席研究科学家,曾任三菱电机研究实验院(MERL)首席研究科学家。2012年获得马里兰大学电气和计算机工程系博士学位。2014年,刘洺堉因机器人视觉工作获得了R&D 100奖,他的街景理解论文是2015年机器人科学与系统(RSS)会议中最佳论文决赛入围者。在2018年的CVPR中,在语义分段竞赛的领域适应和光流估计竞赛中获得了第一名。近年来,他的研究重点是生成图像建模,工作包括pix2pixHD,vid2vid,GauGAN / SPADE,UNIT,MUNIT和FUNIT。他的生成模型作品已被包括纽约时报在内的各种媒体报导,研究目标是使机器具有类似人类想像力的能力。


课程内容

主题:如何利用少样本无监督学习实现高质量图像转换

提纲:

1.无监督学习发展现状

2.少样本无监督图像转换模型FUNIT解析

3.少样本无监督图像转换的应用前景和挑战


本次NVIDIA专场设有主讲群,加入主讲群,你除了可以提前获取课件、免费收听直播外,还能直接和讲师认识及交流。当然,还可以结识更多技术大牛。


主讲群仅限200名额,扫描下方二维码,填写入群申请表,提交完成后我们会尽快与你联系。

点个“在看”和大家一起聊聊

👇👇👇

登录查看更多
4

相关内容

现实生活中常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习
专知会员服务
41+阅读 · 2020年2月20日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
35+阅读 · 2019年12月15日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
53+阅读 · 2019年11月20日
深度学习之星(二):GAN之图像转换 | 公开课
AI研习社
3+阅读 · 2017年12月11日
深度学习之星:GAN的原理 | 公开课
AI研习社
7+阅读 · 2017年11月22日
Phrase-Based & Neural Unsupervised Machine Translation
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员