分类器可视化解释StylEx:谷歌、MIT等找到了影响图像分类的关键属性

2022 年 2 月 15 日 机器之心
选自Google AI Blog
作者:Po-Hsuan Cameron Chen、Maggie Demkin
机器之心编译
编辑:陈萍
本文中,来自谷歌、 希伯来大学、 MIT 等机构的研究者提出了一种新的分类器可视化解释方法 StylEx,该方法能以不同方式修改图像属性来更改其分类器输出。


神经网络可以非常出色地执行各种任务,但它们是如何做出决定的呢?例如,在图像分类任务中,模型是如何确定一张图像属于这一类而不是属于另一类,这通常是一个谜题。解释神经网络如何做决策的过程,可能会在某些领域产生重大的社会影响,例如医学图像分析和自动驾驶。

以前对分类器进行视觉解释的方法(例如注意力图 Grad-CAM)),会强调图像中的哪些区域对分类有影响,但这些方法并没有解释这些区域中的哪些属性决定分类结果:例如是颜色、形状,还是其他的属性决定模型进行这样的分类。另一类方法是通过在一类和另一类之间平滑转换图像来提供解释(例如 GANalyze)。然而,这些方法倾向于一次性改变所有属性(例如颜色、形状),因此,很难隔离单个属性带来的影响。

去年,来自谷歌、 希伯来大学、 MIT 等机构的研究者提出了一种新的分类器可视化解释方法,相关论文被 ICCV 2021 接收。他们提出了 StylEx ,可以自动发现和可视化影响分类器的解耦属性(disentangled attributes)。StylEx 允许通过单独操作这些属性来探索单个属性的影响(也就是说,更改一个属性不会影响其他属性)。StylEx 适用于广泛的领域,包括动物、树叶、面部和视网膜图像。该研究结果表明,StylEx 找到的属性与语义属性非常吻合,可以生成有意义的特定于图像的解释,并且在用户研究中可以被人们所解释。


  • 论文地址:https://arxiv.org/pdf/2104.13369.pdf

  • 论文主页:https://explaining-in-style.github.io/


训练 StyleGAN 来解释分类器

解释猫和狗分类器:StylEx 提供了可以解释分类的 top-K 个解耦属性。移动每个旋钮可以操作图像中的相应属性,同时保持图形的其他属性不变。

例如,要了解给定图像上的猫与狗分类器,StylEx 可以自动检测解耦属性,并可视化操作每个属性如何影响分类器概率。然后用户可以查看这些属性并对它们所代表的内容进行语义解释。例如,在上图中,可以得出狗比猫更容易张开嘴(上图 GIF 中的属性 #4)、猫的瞳孔更像狭缝(属性 # 5),猫的耳朵不倾向于折叠(属性 #1),等等。

下面的视频提供了该方法的简短说明:


给定一个分类器和一个输入图像,该研究希望找到并可视化影响其分类的各个属性。研究人员采用了可以生成高质量图像的 StyleGAN2 架构,整个过程包括两个阶段:

第一阶段:训练 StylEx

论文《StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation》中的研究表明,StyleGAN2 包含一个名为「StyleSpace」的解耦潜在空间,其包含训练图像的单个语义属性。该研究训练了一个类似于 StyleGAN 的生成器来满足分类器需求,从而可以使 StyleSpace 适应分类器特定的属性。

StylEx 通过使用两个附加组件训练 StyleGAN 生成器来实现。第一个是编码器,它与具有 reconstruction-loss 的 GAN 一起训练,并强制生成的输出图像在视觉上与输入相似,从而允许生成器应用于任何给定的输入图像。然而,仅仅只有图像的视觉相似性是不够的,因为它可能不一定捕获对特定分类器(例如医学病理学)重要的细微视觉细节。

为了确保这一点,该研究在 StyleGAN 训练中添加了一个 classification-loss,它强制生成图像的分类器概率与输入图像的分类器概率相同。这保证了细微视觉细节(例如医学病理学)包含在生成的图像中,这对分类器来说是很重要的。

训练 StyleEx:联合训练生成器和编码器。在生成图像和原始图像之间应用 reconstruction-loss,以保持视觉相似性。在生成图像的分类器输出和原始图像的分类器输出之间应用 classification-loss,以确保生成器能够捕获对分类很重要的细微视觉细节。

第二阶段提取解耦属性

训练完成之后,研究者在经过训练的分类器的 StyleSpace 中搜索显著影响分类器的属性,他们对每个 StyleSpace 进行操作并测量其对分类概率的影响。对于给定的图像,研究者寻找对图像分类影响最大的属性。这一过程可以找到 top-K 个特定图像属性。对每个类的图像重复这个过程,可以进一步发现特定类的 top-K 属性,这个端到端的系统被命名为 StylEx。

图像特定属性提取的可视化说明

StylEx 适用于各种领域和分类器

StylEx 适用于各种领域和分类器(二元和多类),下面是感知性别分类器展示的 top-4 属性。

对于性别分类器,以下是每个分类器检测到的前四个属性。对于每个属性,该研究在源图像和属性操作图像之间进行变换。属性(例如胡子、眉毛等)对分类器概率的影响程度显示在每个图像的左上角。

感知性别分类器 Top-4 属性

感知年龄分类器 Top-4 属性

StylEx 揭示了给定分类器可以从数据中学会利用图像不同属性,这些属性可能不一定代表现实中类别标签(例如年轻或年长)之间的实际物理差异。特别是,这些检测到的属性可能会揭示分类器训练或数据集中的偏差。StylEx 可以进一步用于提高神经网络的公平性,例如,通过增加训练数据集的示例来补偿 StylEx 方法揭示的偏差,有针对性的进行补偿。

对于分类严重依赖精细细节的任务,将 classifier loss 添加到 StyleGAN 训练中至关重要。举例来说,在没有 classifier loss 的情况下,在视网膜图像上训练的 GAN 不一定会产生与特定疾病对应的精细病理细节。而添加 classification loss 使得 GAN 生成这些微妙的病理,作为分类器的解释。下面以视网膜图像分类器(DME 疾病)和不健康 / 健康树叶分类器为例。StylEx 能够发现与疾病指标一致的属性,例如视网膜的「硬渗出物」。

视网膜图像 DME 分类器的 Top-4 属性

不健康 / 健康树叶图像 Top-4 属性

特定于鸟的分类器(200 个类),事实上 StylEx 检测到与 CUB(鸟类数据集) 分类中的属性相对应的属性

原文链接:https://ai.googleblog.com/


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

登录查看更多
0

相关内容

分类是数据挖掘的一种非常重要的方法。分类的概念是在已有数据的基础上学会一个分类函数或构造出一个分类模型(即我们通常所说的分类器(Classifier))。该函数或模型能够把数据库中的数据纪录映射到给定类别中的某一个,从而可以应用于数据预测。总之,分类器是数据挖掘中对样本进行分类的方法的统称,包含决策树、逻辑回归、朴素贝叶斯、神经网络等算法。
【CVPR2022】用于全身图像生成的 InsetGAN
专知会员服务
25+阅读 · 2022年3月17日
专知会员服务
25+阅读 · 2021年1月21日
【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
27+阅读 · 2021年1月4日
【ACL2020-Google】逆向工程配置的神经文本生成模型
专知会员服务
16+阅读 · 2020年4月20日
干货——图像分类(上)
计算机视觉战队
27+阅读 · 2018年8月28日
相对的判别器:现有GAN存在关键属性缺失
论智
33+阅读 · 2018年7月4日
卷积神经网络的最佳解释!
专知
12+阅读 · 2018年5月1日
【干货】深入理解变分自编码器
专知
21+阅读 · 2018年3月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员