英伟达公开课 | 手把手教你部署一辆高速目标检测Jetbot智能小车

2020 年 4 月 4 日 量子位
主讲人 | 何琨 英伟达
量子位编辑 | 公众号 QbitAI

3月26日,英伟达图像处理系列公开课第三期线上开播,来自NVIDIA开发者社区的何琨老师,与数百位开发者共同探讨了:

  • 利用NVIDIA迁移式学习工具包构建SSD目标检测网络的推理引擎

  • 将推理引擎迁移到以Jetson Nano为核心的Jetbot智能小车上

  • 在Jetbot智能小车上部署推理引擎

应读者要求,我们将分享内容整理出来,与大家分享。直播中主要的live coding环节受限于文字描述,还请大家观看直播回放(文末附有PPT、直播回放链接) 。

以下为本次分享的内容整理:

大家好,我是来自NVIDIA开发者社区的何琨。我的每次分享都会给大家展示这张图。

它很好的诠释了深度学习的架构,从应用角度来说,视觉、语音识别、NLP等是目前发展较快的领域。市面上有很多框架支持这些深度学习的应用,如Caffe、TensorFlow、PyTorch等,而支撑起这些框架的基础是强大的计算能力。

NVIDIA提供了大量的GPU、边缘设备等,为深度学习框架、推理训练提供了强大的支撑能力。在英伟达CUDA生态系统上,建立了cuDNN、TensorRT、DeepStream SDK、cuBLAS等一系列工具,都是中层的框架应用的基础的内容。

今天分享的主题是“利用迁移式学习工具包加速Jetbot智能小车的推理引擎部署”,首先介绍下这两个工具。

迁移式学习工具包

NVIDIA迁移式学习工具包(Transfer Learning Toolkit,简称TLT)是一个基于Python的工具包,它提供了大量预先训练的模型,并提供一系列的工具,使流行的网络架构适应开发者自己的数据,并且能够训练、调整、修剪和导出模型,以进行部署。


也就是说,我们使用TLT时,就不需要再掌握(上图)左侧这些工具了,大大提高深度学习工作流的效率和精度。

TLT提供了很多训练好的模型,(上图)列举了30多种常用的预训练模型,后面也将推出更多预训练模型,大家可以在NGC(https://www.nvidia.cn/gpu-cloud/)上下载。

选好预训练模型后,我们可以通过TLT对其进行训练、剪枝、再训练等。一键输出后的模型可以直接在DeepStream和TensorRT上使用;优化加速后可以部署在移动端或嵌入式产品上,比如自动驾驶汽车、无人机上。

Jetbot智能小车

Jetbot是以Jetson Nano为计算核心的自动驾驶小车模型。Jetson Nano的体积非常小,只有巴掌大小,但是可以提供470GFLOPS的计算能力。

Nano支持多种接口、双电源,为我们的训练与部署深度学习模型提供了便利。

上图是我去年参加的无人车驾驶比赛的现场,大家可以看到,Jetbot小车能够识别路牌、建筑物,自己找到路径,其计算核心就是Jetson Nano。

上图是Jetbot升级版本的赛车,可以看出它的速度非常快。我们在推理时最高达到了60FPS的速度。实际应用中,为了平衡摄像头的编解码,我们将推理速度减少到45FPS。

上图展示了Jetbot在复杂的环境中自动避障、识别路径的过程,这些功能都是基于深度学习在视觉领域的应用。

我们可以看到,Jetbot小车上有一个前端摄像头,几个控制接口,两个主动轮、一个从动轮,便于大家控制和实践。

我们可以自己设置或直接使用设置好的函数。

前端摄像头的视频接口。我们不需要考虑怎么调用前端摄像头,代码中已经设置好了。

深度学习模型推理接口。


实战:部署一辆Jetbot小车

接下来,何琨老师展示了如何用TLT训练模型,以及在Jetbot上运行模型。受限于文字描述,欢迎大家点击链接观看直播回放(第25分钟起):

直播链接:https://info.nvidia.com/303606-ondemand.html

PPT地址:https://www.nvidia.cn/content/dam/en-zz/zh_cn/assets/webinars/2020/mar26/TLT--2020.03.26.pdf

传送门

第一期课程:利用 NVIDIA 迁移式学习工具包和Deepstream实现实时目标检测

>>直播回放:https://info.nvidia.com/272903-ondemand.html

>>PPT:https://www.nvidia.cn/content/dam/en-zz/zh_cn/assets/webinars/2020/feb27/TLT--2020.02.27.pdf

第二期课程:利用TensorRT 7.0部署高速目标检测引擎

>>直播回放链接:https://info.nvidia.com/291730-ondemand.html

>>PPT:https://www.nvidia.cn/content/dam/en-zz/zh_cn/assets/webinars/2020/mar12/dev/TLT--2020.03.12.pdf


作者系网易新闻·网易号“各有态度”签约作者


—  —

<英伟达NLP公开课> 开始报名啦,4月9号晚8点,英伟达GPU计算专家将分享 FasterTransformer 2.0 的原理与应用,分享如何针对 decoder 和 decoding 进行优化。

戳二维码,备注“英伟达”即可报名、加交流群,主讲老师也会进群与大家交流互动哦~ 

直播报名 | Decoder与Decoding的优化与加速

天文航天亲子社群招募,一起来玩吧~

2020年是个天文大年,4月8日有全年最大的超级月亮,6月有横跨中国的日环食,8月有英仙座流星雨,10月还有两年一次的火星冲日,12月有双子座流星雨。

我们邀请「美国国家地理极致中国探享家刘允」和天文爱好者们,组建了一个天文航天亲子社群,群里除了交流天文航天知识,还会组织一系列讲座、线下观星、航天探访活动。

如果你有宝宝,也热爱天文航天,一起来玩啊。


量子位 QbitAI · 头条号签约作者


վ'ᴗ' ի 追踪AI技术和产品新动态


喜欢就点「在看」吧 !


登录查看更多
0

相关内容

NVIDIA(全称NVIDIA Corporation,NASDAQ:NVDA,发音:IPA:/ɛnvɪdɪə/,台湾官方中文名为輝達),创立于1993年4月,是一家以设计显示芯片和芯片组为主的半导体公司。NVIDIA亦会设计游戏机核心,例如Xbox和PlayStation 3。NVIDIA最出名的产品线是为个人与游戏玩家所设计的GeForce系列,为专业工作站而设计的Quadro系列,以及为服务器和高效运算而设计的Tesla系列。 NVIDIA的总部设在美国加利福尼亚州的圣克拉拉。是一家无晶圆(Fabless)IC半导体设计公司。"NVIDIA"的读音与英文"video"相似,亦与西班牙文evidia(英文"envy")相似。现任总裁为黄仁勋。
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
29+阅读 · 2020年3月5日
MIT公开课-Vivienne Sze教授《深度学习硬件加速器》,86页ppt
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
使用ONNX+TensorRT部署人脸检测和关键点250fps
极市平台
34+阅读 · 2019年10月22日
Mask R-CNN官方实现“又”来了!基于PyTorch,训练速度是原来2倍
机器学习算法与Python学习
5+阅读 · 2018年10月26日
开源神经网络框架Caffe2全介绍
北京思腾合力科技有限公司
3+阅读 · 2017年12月12日
Deeplearning4j的介绍与实例分享 | 公开课
AI研习社
14+阅读 · 2017年11月27日
手把手教你安装深度学习软件环境(附代码)
数据派THU
4+阅读 · 2017年10月4日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年9月27日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
使用ONNX+TensorRT部署人脸检测和关键点250fps
极市平台
34+阅读 · 2019年10月22日
Mask R-CNN官方实现“又”来了!基于PyTorch,训练速度是原来2倍
机器学习算法与Python学习
5+阅读 · 2018年10月26日
开源神经网络框架Caffe2全介绍
北京思腾合力科技有限公司
3+阅读 · 2017年12月12日
Deeplearning4j的介绍与实例分享 | 公开课
AI研习社
14+阅读 · 2017年11月27日
手把手教你安装深度学习软件环境(附代码)
数据派THU
4+阅读 · 2017年10月4日
相关论文
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年9月27日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
4+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员