目前社区中存在着不少个移动端深度学习推理框架(比如NCNN、MNN),它们为社区用户在移动端部署深度学习提供了相当多的便利,但是这些推理框架有一个共性问题:随着不断迭代以及性能优化,运行时库会逐渐增大,尤其是不同算子 fuse 时,会导致大量长尾算子,使 App 或 SDK 体积变得尾大不掉。
为了解决这个问题,由 MegEngine 团队开源的 MegCC 创新性地使用模型预编译方案,生成模型推理必要的代码,将与模型推理无关的代码去除,从而极大程度减小了推理引擎的体积。其主要方法是将传统框架运行时的必要步骤如计算图优化、Kernel 选择、内存分配等全部移到编译过程中,最大程度减少了 Runtime 时的二进制体积大小,并根据模型信息进行进一步的性能优化。
GitHub 开源地址:https://github.com/MegEngine/MegCC
-
-
-
模型编译时可以获得整个计算图的信息,以便继续进行极致的性能优化
-
可以吸收社区在代码生成方面的经验用于为 MegCC 生成代码
不同于传统推理框架,MegCC 是一个真实的深度学习模型编译器,具备
极轻量的 Runtime 二进制体积、高性能、方便移植、极低内存使用以及快启动
等核心特点。用户可在 MLIR上进行计算图优化,内存规划,最后通过预先写好的代码模版进行代码生成。
目前,MegCC 已支持 Arm64、Armv7、x86、risc-v 以及单片机平台。
使用 MegCC 完成模型部署只需要完成以下 3 步:
-
模型编译:编译 MegEngine 模型,生成运行这个模型对应的 Kernel 以及优化之后的模型。
-
Runtime 编译:这个阶段会将 Runtime 和上一步中生成的 Kernel 一起编译成一个静态库。
-
集成到应用中:调用上一步编译的静态库的接口进行推理。
详细操作指南见:https://github.com/MegEngine/MegCC/blob/main/doc/how-to-use-chinese.md
从图中可见,MegCC 生成的推理程序在保证推理性能良好(模型测速结果为 670ms)的情况下,其大小可以达到 95KB。
目前 MegCC 仅支持 MegEngine 模型作为输入,其他模型格式可以考虑转换到 ONNX,然后通过 mgeconvert 进行模型格式转换。
预计在未来 2 个月内,MegCC 将支持更多的模型格式编译。同时实现以下进阶功能:
大家在使用 MegCC 过程中有任何问题,欢迎随时提 issue 告诉我们,也欢迎提 PR 帮助 MegCC 变得更好。
精彩预告
旷视 MegEngine 端侧推理负责人陈其友将于2022 年 11 月 19 日参加 DataFunSummit2022 期间举办的 AI 基础软件架构峰会“深度学习框架论坛”,并带来《MegCC 用模型编译的方式实现超轻量端上高性能推理》主题演讲,从目前端上推理的现状分析,到创新使用模型预编译方案的 MegCC 详解,带你领略新一代 AI 模型编译器 MegCC 的魅力。
演讲提纲:
1. 概述目前端上推理的现状,主要是推理引擎体积方面的情况
2. 介绍 MegCC 的编译器方案
3. 分享「超轻量、高性能、扩展性强」等特性的实现思路
4. 总结 MegCC 的现状、优势以及未来的计划
精彩不容错过,与您相约线上直播~
点击文末阅读原文,立即报名