【18-21期VALSE在线学术报告通知及参与方式】

2018 年 7 月 12 日 VALSE


报告嘉宾:顾险峰纽约州立大学

报告时间:2018年07月18日(星期三)晚上20:00(北京时间)

报告题目:Geometric View to Deep Learning

主持人:刘日升(大连理工)


报告人简介:

顾险峰,美国纽约州立大学石溪分校计算机系终身教授,哈佛大学数学科学和应用中心客座教授。1989年考入清华大学计算机科学与技术系,攻读基础理论方向,1992年获得清华大学特等奖学金,后于美国哈佛大学获得计算机博士学位,师从丘成桐教授。曾获美国国家自然科学基金CAREER奖,“华人菲尔茨奖”——晨兴应用数学金奖等。丘成桐教授和顾险峰教授团队,将微分几何,代数拓扑,黎曼面理论,偏微分方程与计算机科学相结合,创立跨领域学科“计算共形几何”,并广泛应用于计算机图形学,计算机视觉,几何建模,无线传感器网络,医学图像等领域。


个人主页:


http://www.cs.stonybrook.edu/~gu


报告摘要:

In this talk, we introduce geometric interpretation to the fundamental principles of deep learning. The manifold distribution law and the cluster distribution law are the fundamental reasons for the success of DL. Therefore, the major tasks for DL are extracting the manifold structure from the training data, and probability distribution transformation. The concept of rectified linear complexity of a ReLU DNN is introduced to describe the learning capability of the DNN, the upper bound of the complexity is given. The concept of rectified linear complexity of a manifold is introduced as well, which represents the difficulty of the manifold to be learned. Then we can show for any ReLU DNN, there exists a manifold that cannot be learned by the network.

The geometric theory for optimal transportation is introduced, which shows the probability transformation and Wasserstein distance computation can be reduced to a geometric convex optimization problem. Then we show the competition between the Generator and the Discriminator in WGAN model is unnecessary, the two DNN are redundant. We propose to use the transparent OMT model to partially replace the black-box in DNN. Experimental results demonstrate the efficiency and efficacy of the proposed model.


参考文献:

[1] Na Lei, Zhongxuan Luo, Shing-Tung Yau and David Xianfeng Gu. "Geometric Understanding of Deep Learning". arXiv:1805.10451 . 

https://arxiv.org/abs/1805.10451

[2] Xianfeng Gu, Feng Luo, Jian Sun, and Shing-Tung Yau. "Variational principles for minkowski type problems, discrete optimal transport", and discrete monge-ampere equations. Asian Journal of Mathematics (AJM), 20(2):383-398, 2016.

[3] Na Lei,Kehua Su,Li Cui,Shing-Tung Yau,David Xianfeng Gu, "A Geometric View of Optimal Transportation and Generative Model", arXiv:1710.05488. https://arxiv.org/abs/1710.05488

[4] Huidong L,Xianfeng Gu, Dimitris Samaras, "A Two-Step Computation of the Exact GAN Wasserstein Distance", ICML 2018.


18-21期VALSE在线学术报告参与方式:


长按或扫描下方二维码,关注”VALSE“微信公众号(valse_wechat),后台回复”21期“,获取直播地址。



特别鸣谢本次Webinar主要组织者:

VOOC责任委员:刘日升(大连理工

VODB协调理事:王瑞平(中科院计算所



活动参与方式:

1、VALSE Webinar活动依托在线直播平台进行,活动时讲者会上传PPT或共享屏幕,听众可以看到Slides,听到讲者的语音,并通过聊天功能与讲者交互;

2、为参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ群(目前A、B、C、D、E、F、G群已满,除讲者等嘉宾外,只能申请加入VALSE H群,群号:701662399);

*注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。

3、在活动开始前5分钟左右,讲者会开启直播,听众点击直播链接即可参加活动,支持安装Windows系统的电脑、MAC电脑、手机等设备;

4、活动过程中,请不要说无关话语,以免影响活动正常进行;

5、活动过程中,如出现听不到或看不到视频等问题,建议退出再重新进入,一般都能解决问题;

6、建议务必在速度较快的网络上参加活动,优先采用有线网络连接;

7、VALSE微信公众号会在每周一推送上一周Webinar报告的总结及视频(经讲者允许后),每周四发布下一周Webinar报告的通知及直播链接。

登录查看更多
1

相关内容

顾险峰,清华大学计算机系学士,哈佛大学博士,师承国际著名数学大师丘成桐先生。现为美国纽约州立大学石溪分校计算机系终身教授,曾获美国NSFCAREER奖,中国海外杰青,“华人菲尔兹奖”-晨兴应用数学金奖等。顾险峰教授团队将微分几何、代数拓扑、黎曼面理论,偏微分方程与计算机科学相结合,创立跨领域学科“计算共形几何”,并广泛应用于计算机图形学,计算机视觉,三维几何建模与可视化,无线传感网络,医学图像等领域。
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
123+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
VALSE Webinar 19-24期 去雨去雾专题
VALSE
23+阅读 · 2019年9月12日
VALSE Webinar 19-16期 云深可知处:视觉SLAM
VALSE
12+阅读 · 2019年7月4日
SFFAI 33 报名通知 | 图深度学习专题
人工智能前沿讲习班
6+阅读 · 2019年6月12日
VALSE Webinar 19-07期 迁移学习与领域适配
VALSE
5+阅读 · 2019年3月28日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
VALSE Webinar 19-01期 元学习专题研讨
VALSE
13+阅读 · 2018年12月27日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Arxiv
14+阅读 · 2020年1月27日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
6+阅读 · 2018年3月29日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
123+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
VALSE Webinar 19-24期 去雨去雾专题
VALSE
23+阅读 · 2019年9月12日
VALSE Webinar 19-16期 云深可知处:视觉SLAM
VALSE
12+阅读 · 2019年7月4日
SFFAI 33 报名通知 | 图深度学习专题
人工智能前沿讲习班
6+阅读 · 2019年6月12日
VALSE Webinar 19-07期 迁移学习与领域适配
VALSE
5+阅读 · 2019年3月28日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
VALSE Webinar 19-01期 元学习专题研讨
VALSE
13+阅读 · 2018年12月27日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
相关论文
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Arxiv
14+阅读 · 2020年1月27日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
6+阅读 · 2018年3月29日
Arxiv
12+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员