STEM教育的主要目标是培养学生创新精神、创新能力和实践能力( Parker et al.,2015;余胜泉等,2015)。能否形成创造性文化和创新性成果,被认为是判断STEM教育发展阶段的重要指标(赵慧臣等,2017)。然而,STEM教学是多学科融合、面向复杂学习的过程,其对创造能力的影响须借助严谨的实验加以验证,而非简单体验或主观判断(Judson,2014)。因此,国内外学者积极开展实验研究,探讨STEM教学与创造力的关系,并得出三种迥然不同的结论。
第一种观点认为,STEM教学对学生的创造力确实有提升作用。例如,韩国庆尚大学孔梁云等通过实验研究发现,STEM教学能显著提高小学四年级学生的创新实践能力,其中科学探究、工程设计能力提升最明显(Kong&Huo,2014)。雷诺兹等通过STEM教学发现,实验组的创新思维与创新心理显著高于对照组(Reynolds et al.,2008)。吴永和等(2018)通过实验研究发现,STEM教学实践活动能显著提高大学生的学习兴趣及跨学科创新实践能力。孙江山等(2016)利用心理旋转测试和威廉斯创造力量表,发现STEM活动能显著提高初中生的创新思维和空间能力。
第三种结论全面否定了STEM教学对创造力的影响。例如,卡维耶蒂等(Cervetti et al.,2012)以937名小学生为研究对象,开展以阅读理解、科学写作为主题的STEM教学结果显示,小学生的创造力没有显著变化。汤斯(Townes,2016)的研究同样表明,STEM教学并未显著提升初中生的学习态度、创造力水平。
本研究参照“脑—手—心创造力模型”(Kozbelt et al.,2010),将创造力类别编码为A类:创新思维(逻辑思维、批判思维、跨学科思维、发现问题、解决问题、创新想象、空间能力);B类:创新实践能力(科学探究、实践操作、工程设计、技术应用能力);C类:创新人格与心理(认知能力、团队合作、主动参与、学习兴趣、学习态度)。实验结果编码为提高、部分提高、未提高(见表一)。
罗斯坦等强调,元分析样本出现发表偏倚时,会导致效应值远大于实验真实值,直接影响元分析结果的准确性和可靠性(Rothstein et al.,2006)。本研究采用漏斗图对42项样本进行发表偏倚检测。样本源均分布于漏斗图的上部有效区域,两侧数据对称且向中线靠拢,说明纳入的42项元分析样本科学有效,出现发表偏倚的可能性极小(见图1)。
(二)异质性检验
异质性检验是防止因存在异质性而无法合并效应值。研究采取统计量方法判断样本的异质性程度。通常,≥75%时采用随机效应模型,0≤≤75%时采用固定效应模型消除异质性,以防研究结果出现偏差(Borenstein et al.,2009)。42项元分析样本的异质性结果(见表二),故本研究采用随机效应模型消除样本的异质性,以保证分析结果的科学性。
不同教学周期对创造力的调节作用差异显著,组间效应,P=0.032<0.05(见表六)。效应值排序显示,实验周期愈长,STEM教学对创造力的影响效果愈明显。持续6个月以上的教学,对创造力的提升作用达到中等程度(SMD=0.48);3-6个月的教学效果稍差(SMD=0.44);低于3个月的教学,创造力培养绩效仅达到较低水平(SMD=0.27)。这与罗宾逊等的研究结果一致,即学生创造力的受影响程度与教学周期正相关(Robinson et al.,2014)。
元分析结果表明,STEM教学能激发创新思维及创造行为。其作用机制可理解为:STEM整合相互分离、割裂的学科知识,使学生按照关联、动态、系统的方式理解世界,在发散思维—聚合思维的迭代循环中发展创新思维(Park&Yoo,2013)。同时,STEM教学通过面向真实情境的复杂问题,引导学生经历完整的科学求证过程(Tati et al.,2017),从中获得创新实践的直观体验、非良构知识、科学理性及自我管理策略。此外,STEM教学能通过协作活动,支持不同认知水平、思维特征和知识背景的学生进行自我表达,在互通情感和相互激励中建立自我认知,塑造创新人格与心理。
然而,STEM教学对不同类别创造力的最大效应值为0.44,仍属中等偏小程度。这说明STEM教学的实际成效并不尽如人意。研究表明,STEM教学对教师和学生提出了更高要求( Yildirim&Sevi,2016)。STEM学习中,无论是知识综合应用、复杂问题的创造性解决还是科学探究活动的完成,都依赖于动作图示、符号图示或运算图示的正确运用。当学生认知图式不健全或者图示构建存在困难时,会产生认知负荷。过高认知负荷使创新成为“精神的负担”,而非“快乐的源泉”(Yildirim et al.,2018)。这提醒我们,应理性认识STEM学习中的认知障碍,并通过控制认知负荷提升STEM教学绩效。
学段方面,STEM教学对高中生创造力提升最显著,根源在于心智模型(简洁思维、发散思维、逻辑思维和逆向思维)成熟度对创造力生成的影响。高中阶段的学生学科知识储备基本完成,问题解决所需的智慧技能与学习管理所需的认知策略也已具备。路・塞兹等证明,高中阶段是自我认同形成和发展的关键时期,高中生跨学科应用STEM知识的实践需求会刺激认同感的保持(Lou et al.,2010)。可以说,高中生的知识水平与心智水平均处于创造力发生的最佳阶段,因而能在STEM学习中获得高绩效。
学科方面,创新科技类课程最容易实现创造力培养。可能的原因是,创新科技类学科基于信息技术展开,新技术本身对创新意愿刺激较强。加之此类学科内容多以设计、制作等创造性应用为主,更贴近STEM教学要求。教师开展教学设计时,亦容易将跨学科的概念融入产品制作或原型设计。而且,创新科技类活动是创造性、开放式的问题解决过程,能为学生提供创新实践、综合应用STEM相关学科知识的机会,促进学生高阶认知和创新机制的发生(Cotabish et al., 2013)。
教学周期方面,STEM教学持续时间越久,创造力培养效果越明显。这与雷诺兹等关于学生创新能力培养与教学周期正向相关的研究结论一致(Reynolds et al.,2008)。STEM教学持续周期越长,学生完成复杂学习和深度学习的经验越丰富,能够建立充分的自信以应对创新活动的困难与阻碍。罗宾逊等指出,教学周期越长,学生对STEM元认知及角色期待越明显,越倾向于参与自主探究活动,并在合作交流中形成乐观自信的态度(Robinson et al.,2014)。
如前所述,降低认知负荷是STEM学习有效发生的必要条件。约翰・斯威勒提出的认知负荷效应理论可用于优化STEM教学(Sweller et al.,2011)。例如,用目标自由的题目代替特定目标的传统题目,促进学习迁移的发生;向学习者提供问题解决样例和部分解决方案,帮助学习者建立认知图式;利用口头和多种视觉信息代替单一的书面文字,拓展有效工作记忆的容量;精炼教师的指导内容,减轻外部认知负荷;多采用想象和心理练习替代传统的附加练习,并使用高交互的学习材料;增加任务特征、呈现方式、操作情境的可变性,并在面对高挑战性任务时,积极采用集体学习方式。
元分析结果同时表明,随着教学周期的延长,STEM教学对学生创造力的影响效果持续增加。因此,保持STEM课程内容和教学时间的连续,并关注学段衔接问题有重要意义。美国的经验为我们提供了两条可行之路:一是设立跨学段的STEM教学试验项目,如面向小学、初中和高中的项目引路(Project Lead The Way)以及面向初中、高中和大学的Ten80学生汽车挑战赛(Ten80 Student Racing Challenge)项目(CTEq,2013);二是构建跨学段的STEM连贯课程群,如亚利桑那州立大学联合宇航局开发的面向小学至研究生阶段的火星教育项目STEM课程(Mars Education at Arizona State University,2002),北卡罗来纳州科学和数学学校设立的贯穿初中、高中和大学等学段的精英课程等( NCSSM,2016)。