前言
这本书试图提供足够的理论信息,然后使用代码示例窥视幕后,以了解一些算法是如何实现的。代码示例还提供了一个方便的模板,用于构建图形模型和回答概率查询。在文献中描述的许多种类的图形模型中,这本书主要关注离散贝叶斯网络,偶尔也有来自马尔科夫网络的例子。
内容概述
第一章:概率论,涵盖了理解图形模型所需的概率论的概念。
第2章:有向图形模型,提供了关于贝叶斯网络的信息,他们的属性相关的独立性,条件独立性,和D分离。本章使用代码片段加载贝叶斯网络并理解其独立性。
第三章:无向图模型,介绍了马尔可夫网络的性质,马尔可夫网络与贝叶斯网络的区别,以及马尔可夫网络的独立性。
第四章:结构学习,涵盖了使用数据集来推断贝叶斯网络结构的多种方法。我们还学习了结构学习的计算复杂性,并在本章使用代码片段来学习抽样数据集中给出的结构。
第5章:参数学习,介绍了参数学习的最大似然法和贝叶斯方法。
第6章:使用图形模型的精确推理,解释了精确推理的变量消除算法,并探索了使用相同算法回答我们的推理查询的代码片段。
第7章:近似推理方法,探讨了网络太大而无法进行精确推理的近似推理。我们还将通过在马尔科夫网络上使用循环信念传播运行近似推论的代码样本。
目录
部分截图
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“BPGMP2020” 可以获取《【干货书】用Python构建概率图模型,173页pdf》专知下载链接索引