《统计学习导论》很经典,但用的是 R 语言,没关系,这里有份 Python 版习题实现。
斯坦福经典教材《The Element of Statistical Learning》(简称 ESL)被称为频率学派的统计学习「圣经」,由三位统计学大师——Trevor Hastie、Robert Tibshirani、Jerome Friedman 共同完成。这本书介绍了神经网络、支持向量机、分类树和 boosting、图模型、随机森林、集成方法、Lasso 最小角度回归和路径算法、非负矩阵分解和谱聚类等各类机器学习算法,可以帮助读者了解机器学习算法全貌。
但对于刚入门的小白来说,把这本经典教材啃下来难度还是相当大的,因为书中有大量的公式、矩阵推导,总长度达到 700 多页。因此,Trevor Hastie 等人又写了一本入门级的《Introduction to Statistical Learning with R(统计学习导论:基于 R 应用)》(简称 ISL),帮助更多的人尽快上手。ISL 弱化了数学推导的细节,更注重方法的应用,相当于 ESL 的导读版,在入门读者中很受欢迎。
但美中不足的是,书中的练习是用 R 语言来实现的,这对于主要使用 Python 语言的机器学习研究者来说不太友好。
为了克服这一障碍,有人尝试用 Python 语言解决了书里的所有概念、应用练习,并将其上传到了 GitHub。
GitHub 链接:https://github.com/hardikkamboj/An-Introduction-to-Statistical-Learning
除了练习之外,他还提供了书中某些话题的 Python 教程并重制了一些图表。
作者表示,完成这项工作并不简单,需要做很多研究工作,书中也可能存在纰漏。
和原书对应,作者给出的 Python 解决方案正文也分为以下九章:
统计学习
线性回归
分类
重采样方法
线性模型选择与正则化
非线性模型
基于树的方法
支持向量机
无监督学习
每章至少包含两部分:应用问题和概念问题,对应书中两种不同的练习题。
如果你正在读这本书或者想重新做一下书里的练习,可以参考这份 Python 版资料,也可以跟着教材的配套视频边学边做。
视频链接:https://www.bilibili.com/video/BV11t411A7Ym
参考链接:https://zhuanlan.zhihu.com/p/27556007
10月19日,第一讲:音频基础与声纹识别。谷歌资深软件工程师、声纹识别与语言识别团队负责人王泉老师将介绍声纹识别技术相关基础知识,包括发展历程、听觉感知和音频处理相关基本概念与方法、声纹领域最核心的应用声纹识别等。
添加机器之心小助手(syncedai5),备注「声纹」,进群一起看直播。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:content@jiqizhixin.com