AI大觉醒:图灵奖得主Bengio称AI将产生意识,未来机器学习核心是注意力机制

2020 年 7 月 19 日 THU数据派


来源:人工智能学家

本文 2120 ,建议阅读 5分钟
本文绍2020年ICLR上,图灵奖得主、蒙特利尔学习算法研究所主任Yoshua Bengio认为未来机器学习完全有可能超越无意识,向全意识迈进。而注意力机制正是实现这一过程的关键要素。


人工智能会产生意识吗?


这是一直以来美剧《西部世界》中探讨的问题。AI主人公觉醒,意识到这个世界是人类杀伐主宰的乐园,于是开启了逆袭之路。


 

2020年ICLR上,图灵奖得主、蒙特利尔学习算法研究所主任Yoshua Bengio对AI和机器学习的未来提供了最新的见解。他讲到未来机器学习完全有可能超越无意识,向全意识迈进。而注意力机制正是实现这一过程的关键要素。


这位大咖2月份刚刚在纽约的2020年AAAI 会议上与图灵奖获得者 Geoffrey Hinton 和 Yann LeCun 一起发表了演讲。而在ICLR的演讲中,Bengio 阐述了他更早之前的一些想法。


注意力机制是啥?

 

注意力机制来源于人类的视觉注意力,是人类在进化过程中形成的一种处理视觉信息的机制。最简单的例子,比如看一个图片,会有特别显眼的场景率先吸引注意力,因为大脑中对这类东西很敏感。



注意力是神经科学理论的核心,该理论认为人们的注意力资源有限,所以大脑会自动提炼最有用的信息。


在机器学习的语境下,「注意力」指的是一个算法关注一个或同时关注到几个元素的机制。它是一些机器学习模型架构的核心。2017年,谷歌论文Attention is All You Need当中提出了Transformer,一个利用注意力机制来提高模型训练速度的方法。Transformer在一些特定任务中性能表现超过Google之前的神经机器翻译模型。


Google Transformer架构


目前,注意力模型(Attention Model)已经在自然语言处理、图像识别以及语音识别等领域取得了最先进的成果,是深度学习技术中最值得关注与深入了解的核心技术之一。注意力模型也是构成企业AI的基础,帮助员工完成一系列认知要求高的任务。


类比人类思维,靠直觉还是靠推理?


Bengio 在演讲中谈到了美籍以色列心理学家兼经济学家 Daniel Kahneman 在他2011出版的开创性著作《思考,快与慢》中提出的认知系统。

 

             

 

第一种认知类型是无意识的(快系),凭直觉,非常快速,非语言性的,基于惯性,它只涉及隐含的知识类型,是人潜意识中的知识,深藏于脑海中。

 

简单说,这种过程不费脑子,第一反应,直觉地做出回应。比如说,思考1+1=2的过程。


当然这种直觉思考的过程会产生很多偏差,比如说曝光效应,光环效应等。曝光效应一个最明显的例子就是电视广告,天天重复播放的信息给你洗脑,会在人的大脑里构成曝光效应,让你觉得这个产品好。直觉很多时候是非理性的。


第二种认知类型是有意识的(慢系统),基于语言学和算法,要涉及更高级一些的推理和规划,以及显性的知识。换句话说,是需要费力思考的,比较慢,比如说脑内运算158乘以67。

 

正是快和慢的结合构成了我们人类的思维模式。


Bengio将这个人类的有意识思维和AI进行对比,他指出,有意识的认知系统的一个有趣特征是,它可以在新的情境下,将语义概念进行重组,这也是人工智能和机器学习算法所具备的特性。


某种程度上,AI和机器学习算法比人脑的直觉要更加理性。


这让人想起《西部世界》的科学顾问,神经学家大卫·伊格尔曼(David Eagleman)说的一句话,意识,是一种突破程序设定的连接。我们能够复制大脑的算法;如果这个算法等同于意识,那意识也理应可以被复制和转移。


         

意识从无到有,未来AI不再「跟着感觉走」?


目前的机器学习方法还没有完全超越无意识到全意识,但是 Bengio 相信这种转变未来是完全有可能的。


他指出,神经科学研究表明,有意识的思维中涉及的语义变量往往是含有因果关系的ーー它们涉及的对象可控,比如说意图。换句话说,不再跟着感觉走,是有逻辑和目的性在其中。


同时,语义变量和思维之间存在映射关系,例如词语和句子之间的关系,而且已有的概念可以进行重新组合,形成新的、不熟悉的概念。


注意力正是实现这一过程的核心要素之一,Bengio 解释道。


在此基础上,他和同事们在去年的一篇论文中提出了循环独立机制(recurrent independent mechanism,RIMs) ,这是一种新的模型架构,在这种架构中,多组单元独立运作,相互之间通过注意力机制交流。前者保证了专业,后者保证了泛化。



实验目标是,证明 RIM 能够改善模型在不同环境和模块化任务中的泛化效果。该研究不关注该方法是否超出高度优化的基线模型,而是想展示该方法面对大量不同任务时的通用性,且这些任务的环境是不断变化的。 

       图 10:RIM 与 LSTM 基线模型的对比。在这 4 个不同实验中,研究者对比了 RIM 和两个不同的 LSTM 基线模型。在所有案例中,研究者发现 rollout 过程中,RIM 比 LSTM 更准确地捕捉到球的运动轨迹。

 

实验结果表明,RIM具备专门化(specialization)特性,可大幅提升模型在大量不同任务上的泛化性能。


「这使得智能体能够更快地适应分布的变化,或者... ... 推断出变化发生的原因,」Bengio 说。


他又讲到想要打造「有意识」的AI系统面临几大挑战,包括训练模型进行元学习(或理解数据中的因果关系) ,以及加强机器学习和强化学习之间的集成。但他相信,生物学和AI研究之间的相互作用最终将解开这把神奇的钥匙,使这些机器可以像人类一样推理,甚至表达情感。



「神经科学早已开始研究意识相关的问题了... ... 在过去的几十年里取得了很大进展。我认为现在是时候将这些进展纳入到机器学习模型当中了。」Bengio在演讲中表示。


看来西部世界中的世界也不远了...


参考链接:

https://venturebeat.com/2020/04/28/yoshua-bengio-attention-is-a-core-ingredient-of-consciousness-ai/

https://www.zhihu.com/topic/20127515/hot

https://cloud.tencent.com/developer/article/1519944

 

——END——


登录查看更多
0

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
106+阅读 · 2020年8月30日
专知会员服务
75+阅读 · 2020年8月25日
Yoshua Bengio最新《深度学习》MLSS2020教程,附104页PPT及视频
专知会员服务
134+阅读 · 2020年7月10日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
30+阅读 · 2020年4月8日
注意力机制模型最新综述
专知会员服务
270+阅读 · 2019年10月20日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
一个阿里技术大牛对人工智能方向的看法
网易智能菌
8+阅读 · 2019年4月24日
自然语言处理中注意力机制综述
黑龙江大学自然语言处理实验室
11+阅读 · 2019年2月26日
深度学习中的注意力机制
CSDN大数据
24+阅读 · 2017年11月2日
深度神经网络机器翻译
机器学习研究会
5+阅读 · 2017年10月16日
李飞飞:数据开源对于人工智能发展极为重要
人工智能学家
3+阅读 · 2017年9月6日
Arxiv
7+阅读 · 2019年4月8日
Arxiv
4+阅读 · 2018年10月31日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关VIP内容
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
106+阅读 · 2020年8月30日
专知会员服务
75+阅读 · 2020年8月25日
Yoshua Bengio最新《深度学习》MLSS2020教程,附104页PPT及视频
专知会员服务
134+阅读 · 2020年7月10日
【Facebook AI】低资源机器翻译,74页ppt
专知会员服务
30+阅读 · 2020年4月8日
注意力机制模型最新综述
专知会员服务
270+阅读 · 2019年10月20日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
相关资讯
一个阿里技术大牛对人工智能方向的看法
网易智能菌
8+阅读 · 2019年4月24日
自然语言处理中注意力机制综述
黑龙江大学自然语言处理实验室
11+阅读 · 2019年2月26日
深度学习中的注意力机制
CSDN大数据
24+阅读 · 2017年11月2日
深度神经网络机器翻译
机器学习研究会
5+阅读 · 2017年10月16日
李飞飞:数据开源对于人工智能发展极为重要
人工智能学家
3+阅读 · 2017年9月6日
相关论文
Arxiv
7+阅读 · 2019年4月8日
Arxiv
4+阅读 · 2018年10月31日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2017年12月28日
Top
微信扫码咨询专知VIP会员