2012年,数以百万计的学习者选择参加大规模开放在线课程(Massive Open Online Course,简称MOOC),与不同文化、教育背景的学习者共同学习。在线学习的大规模性使得交互的本质发生了改变,亟待新的研究方法来发现交互的新规律。内容分析或话语分析在早期交互研究中被广泛使用。尽管这些方法具有重要的意义,然而在以MOOCs为代表的在线学习中,一门课程中数以千计的学习者产生的大量且非结构化的交互数据,使得传统的研究方法呈现出一定的局限性。MOOCs在线交互产生的“电子踪迹(Digital Traces)”让研究者能够获取到以往传统教育研究中无法采集的数据,如考试前学生查阅课本频率、在期末考试前学生交流频次等[1]。大规模学习产生的海量数据相比于以往计算机协作学习(CSCL)环境下的数据,呈现出截然不同的特征,其表现在数据量之大、传播速度之快、数据种类之多和不同程度的可信性[2]。Mcauley等提出,大规模学习中采集的数据多为自然浮现的(Emergent)、碎片化的(Fragmented)、弥散化的(Diffuse)和多样的(Diverse)[3]。具有大数据特征的这些海量数据为研究学习交互提供了新的机遇与挑战。研究者除了关注交互的内容,还更加关注交互个体之间的关系,由此形成交互模式以及背后的交互机制[1,4]。
相关性研究问题中包括对两个或多个因素之间的关系进行研究,其中有一大类为相关关系的解释。在这类研究问题的表述中,经常使用的词语有“与……有关(Relate to……)”“关系(Relationship)”等。例如:Hernández-García等将不同个体以及整体的社会网络指标与在线学习成果进行了相关分析[22];Carceller等分析了社会资本和学业成绩之间的相关关系[23];Dawson探究了社区感(Sense of Community)和网络变化之间的相关关系[13];Thormann等探究了学生助教的数量与批判性思考之间的相关关系[16];Tirado-Morueta等探究了不同的学习任务类型是否会影响个人网络指标或整体网络指标[26]。
[1] GILLANI N,EYNON R. Communication patterns in massively open online courses[J].The internet and higher education,2014,23(4):18-26.
[2] SIEWERT S B. Big data in the cloud:data velocity,volume,variety,veracity[EB/OL].(2013-07-09)[2019-05-23].https://www.ibm.com/developerworks/library/bd-bigdatacloud/index.html.
[3] MCAULEY A,STEWART B,SIEMENS G,et al. The MOOC model for digital practice[EB/OL].(2010-12-20)[2019-05-23].davecormier.com/edblog/wp-content/uploads/MOOC_Final.pdf.
[4] ZHANG J,SKRYABIN M,SONG X.Understanding the dynamics of MOOC discussion forums with simulation investigation for empirical network analysis (SIENA)[J]. Distance education,2016,37(3):270-286.
[5] SIE R L,ULLMANN T D,RAJAGOPAL K,et al. Social network analysis for technology-enhanced learning:review and future directions[J]. International journal of technology enhanced learning,2012,4(3/4):172-190.
[6] CELA K L,SICILIA M,SALVADOR S. Social network analysis in e-learning environments:a preliminary systematic review[J]. Educational psychology review,2015,27(1):219-246.
[7] ADITOMO A,REIMANN P.Learning from virtual interaction:a review of research on online synchronous groups[C]//Proceedings of the 7th International Conference on Computer Supported Collaborative Learning.NJ:Lawrence Erlbaum Associates,2007.
[8] SKRYPNYK O,JOKSIMOVIC S,KOVANOVIC V,et al.Roles of course facilitators,learners,and technology in the flow of information of a cMOOC[J].The international review of research in open and distributed learning,2014,16(3):188-217.
[9] ZHU M,BERGNER Y,ZHANG Y,et al.Longitudinal engagement, performance,and social connectivity:a MOOC case study using exponential random graph models[C]//Proceedings of the Sixth International Conference on Learning Analytics & Knowledge.NY:ACM,2016:223-230.
[10] TAWFIK A A,REEVES T D,STICH A E,et al.The nature and level of learner-learner interaction in a chemistry massive open online course (MOOC)[J]. Journal of computing in higher education,2017,29(3):411-431.
[11] ERGUN E,USLUEL Y K. An analysis of density and degree-centrality according to the social networking structure formed in an online learning environment[J]. Journal of educational technology & society,2016,19(4):34-46.
[12] LAAT M D,LALLY V,LIPPONEN L,et al. Investigating patterns of interaction in networked learning and computer-supported collaborative learning:a role for social network analysis[J]. International journal of computer-supported collaborative learning,2007,2(1):87-103.
[13] DAWSON S.A study of the relationship between student social networks and sense of community[J]. Journal of educational technology & society,2008,11(3):224-238.
[14] MANCA S,DELFINO M,MAZZONI E. Coding procedures to analyse interaction patterns in educational web forums[J]. Journal of computer assisted learning,2009,25(2):189-200.
[15] DAWSON S.Seeing' the learning community:an exploration of the development of a resource for monitoring online student networking[J]. British journal of educational technology,2010,41(5):736-752.
[16] THORMANN J,GABLE S,FIDALGO P,et al. Interaction,critical thinking,and social network analysis(SNA) in online courses[J]. The international review of research in open and distributed learning,2013,14(3):294-318.
[17] LIN X,HU X,HU Q,et al. A social network analysis of teaching and research collaboration in a teachers' virtual learning community[J]. British journal of educational technology,2014,47(2):302-319.
[18] KELLOGG S,BOOTH S,OLIVER K.A social network perspective on peer supported learning in MOOCs for educators[J]. International review of research in open & distance learning,2014,15(5):263-289.
[19] GILLANI N,YASSERI T,EYNON R,et al. Structural limitations of learning in a crowd:communication vulnerability and information diffusion in MOOCs[J]. Scientific reports,2014,4:6447.
[20] DOWELL N M M,OLEKSANDRA S,SRECKO J,et al. Modeling learners' social centrality and performance through language and discourse[C]// Proceedings of the 8th International Conference on Educational Data Mining.Massachusetts:IEDMS,2015.
[21] TIRADO R,HERNANDO á,AGUADED J I.The effect of centralization and cohesion on the social construction of knowledge in discussion forums[J]. Interactive learning environments,2015,23(3):293-316.
[22] HERNANDEZ-GARCIA A,GONZALEZ-GONZALEZ I,JIMENEZ-ZARCO A I,et al.Applying social learning analytics to message boards in online distance learning:a case study[J]. Computers in human behavior,2015,47(6):68-80.
[23] CARCELLER C,DAWSON S,LOCKYER L.Social capital from online discussion forums:differences between online and blended modes of delivery[J]. Australasian journal of educational technology,2015,31(2):150-163.
[24] REHM M,MULDER R H,GIJSELAERS W,SEGERS M.The impact of hierarchical positions on the type of communication within online communities of learning[J].Computers in human behavior,2016,58(6):158-170.
[25] JO I,PARK Y,LEE H. Three interaction patterns on asynchronous online discussion behaviours:a methodological comparison[J]. Journal of computer assisted learning,2017,33(2):106-122.
[26] TIRADO-MORUETA R,MARAVER L P,HERNANDO G. Patterns of participation and social connections in online discussion forums[J]. Small group research,2017,48(6):639-664.
[27] PHAM M C,DERNTL M,CAO Y,et al.Learning analytics for learning blogospheres[C]// International Conference on Web-Based Learning,Advances in Web-Based Learning-ICWL 2012.Berlin,Heidelberg:Springer,258-267.
[28] BORGATTI S P. Centrality and network flow[J]. Social networks,2005,27(1):55-71.
[29] BRINTON C G,CHIANG M,JAIN S,et al. Learning about social learning in MOOCs:from statistical analysis to generative model[J]. IEEE transactions on learning technologies,2014,7(4):346-359.
[30] WISE A F,CUI Y,VYTASEK J. Bringing order to chaos in MOOC discussion forums with content-related thread identification[C]//Proceedings of the Sixth International Conference on Learning Analytics & Knowledge.New York:ACM,2016:188-197.
[31] JIANG Z,ZHANG Y,LIU C,et al.Influence analysis by heterogeneous network in MOOC forums:what can we discover?[C]// Proceedings of the 8th International Conference on Educational Data Mining.Massachusetts:IEDMS,2015.
[32] RODRIGUEZ D,SICILIA M A,SANCHEZ-ALONSO S,et al. Exploring affiliation network models as a collaborative filtering mechanism in e-learning[J]. Interactive learning environments,2011,19(4):317-331.
[33] WISE A F,CUI Y,JIN W Q,et al. Mining for gold:identifying content-related MOOC discussion threads across domains through linguistic modeling[J]. The internet and higher education,2017,32(1):11-28.
[34] GUNAWARDENA C N,LOWE C A,ANDERSON T.Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing[J]. Journal of educational computing research,1997,17(4):397-431.
[35] RIVERA M T,SODERSTROM S B,UZZI B. Dynamics of dyads in social networks:assortative,relational,and proximity mechanisms[J]. Annual review of sociology,2010,36(1):91-115.
[36] BURGESS S,SSANDERSON E,UMANA-APONTE M. School ties:an analysis of homophily in an adolescent friendship network[EB/OL]. (2011-08-01)[2019-05-23].http://www.bristol.ac.uk/cmpo/publications/papers/2011/wp267.pdf.
[37] SOLLER A.Supporting social interaction in an intelligent collaborative learning system[J].International journal of artificial intelligence in education,2001,12(12):40-62.
[38] ANDERSON L W. Taxonomy for learning, teaching, and assessing[J]. European legacy,2001,114(458):1013-1014.
[39] LAVE J,WENGER E. Situated learning:legitimate peripheral participation[M]. New York:Cambridge University Press,1991.
[40] HAYTHORNTHWAITE C,DE LAAT M. Social networks and learning networks:using social network perspectives to understand social learning[C]//Proceedings of the 7th International Conference on Networked Learning. Aalborg,Denmark:Lancaster University,2010:183-190.
[41] DE LAAT M. Networked learning[D]. England:University of Southampton,2006.
[42] SIEMENS G. Connectivism:learning as network-creation[EB/OL].[2019-05-23].http://www.elearnspace.org/Articles/networks.htm.
Online Interaction and Network Analysis in International Perspective:Review and Prospect
ZHANG Jingjing, YANG Yehong, WANG Yeyu, CHEN Li(Research Centre of Distance Education, Beijing Normal University, Beijing 100875)
[Abstract] Online learning is characterized by large-scale, openness, flexibility, dynamics and other characteristics, which have changed the nature of learning interaction. New research theories and methods are urgently needed to discover new laws of interaction and evolution. Learning and interaction are not constricted to groups. The interaction between individuals is being extended in a way to form an interactive network, making it possible to conduct research on learning and interaction from the perspective of network analysis. In this study, 23 English papers are selected as text data to illustrate online learning interaction using network analysis from multiple aspects such as re-lexicalization, basic features, network indicators, data screening methods, research questions, theoretical framework, models and methods. It is found that network analysis is an important method to study large-scale interaction in online learning. However, traditional static network indicators are incapable of supporting the in-depth study of online learning interaction. The dynamic evolution mechanism of network will become a new trend and research focus. Based on the multi-disciplinary theory, how to eliminate the "noise" in interactive data is taken as the research design and method, and the empirical research will help people to re-understand social learning, open and flexible online learning, making the emergence of new theories possible.