目标检测开源数据集汇总(二)

2022 年 7 月 10 日 极市平台
↑ 点击 蓝字  关注极市平台

编辑丨极市平台

极市导读

 

本文汇总了一些开源目标检测类的数据集,附下载链接。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

多显著性对象数据集

数据集链接:http://m6z.cn/5AsmXB

本数据集共有 1224 张图像来自四个公共图像数据集:COCO、VOC07、ImageNet 和 SUN。Amazon Mechanic Turk 工作人员将每个图像标记为包含 0、1、2、3 或 4 个以上的显着对象。可以在imgIdx.mat中找到此标签信息以及边界框注释,一个存储图像信息的matlab结构数组。MSO 数据集是 SOS 数据集测试集的子集。波士顿大学的团队删除了一些显着对象严重重叠或者对于标记指定数量的显着对象不明确的图像。因此,在来自 SOS 测试集的 1380 张图像中,只剩下 1224 张图像。MSO 数据集中超过一半的图像包含零个显着对象或多个显着对象。这旨在提供更真实的设置来评估显着对象检测方法。

0 个显着对象:338 个图像 1 个显着对象:611 个图像 2 个显着对象:155 个图像 3 个显着对象:100 个图像 4+ 显着对象:20 张图像

足球和板球数据集

数据集链接:http://m6z.cn/6qle40

该数据集包含YOLO格式的足球和板球的注释图像,为Open Image Dataset 的一个子集。

交通摄像头检测数据集

数据集链接:http://m6z.cn/6qle5C

该数据集是来自伊利诺伊州芝加哥市交通摄像头的增强随机屏幕截图的集合。在数据中,所有车辆都被标记在一个名为 的类别中car。标签由边界框组成,并以 YOLOv5 PyTorch 格式存储。

英雄联盟小地图的冠军数据集

数据集链接:http://m6z.cn/5WkCzK

该数据集包含普通图像和带边界框的噪声图像,在整个英雄联盟游戏过程中,绘制边界框以从小地图中识别冠军。

目前可用的冠军有(数字显示相关冠军的等级编号):0 - 维迦 1 - 戴安娜 2 - 弗拉基米尔 3 -瑞兹 4- 艾克

5 - 艾瑞莉亚 6 - 易大师 7 - 夜曲 8 - 万神殿 9 - 约里克

还添加了一个 YOLOv3 权重文件,它已被训练以识别上述冠军。

船只类型数据集

数据集链接:http://m6z.cn/5HiCKi

本数据集大约含有 1,500 张不同大小的船图片,但按不同类型分类:浮标、游轮、渡船、货船、贡多拉、充气船、皮划艇、纸船、帆船。

火星/月球陨石坑探测数据集

数据集链接:http://m6z.cn/5WkCUe

图像数据:可能包含陨石坑的火星和月球表面图像。数据源混杂。对于火星图像,图像主要来自 ASU 和 USGS;目前所有月球图像都来自美国宇航局月球勘测轨道器任务。所有图像均使用 RoboFlow 进行预处理,以去除 EXIF 旋转并将大小调整为 640*640。

标签:每个图像都有其关联的 YOLOv5 文本格式的标签文件。标注工作由我们自己完成,主要用于物体检测。

训练好的 YOLOv5 模型文件:对于每个新版本,我们将使用最新版本的数据上传我们预训练的 YOLOv5 模型文件。目前使用的网络结构是YOLOv5m6。

零售产品结账数据集

数据集链接:http://m6z.cn/5HiCMy

近年来,人们对将计算机视觉技术集成到零售行业产生了新的兴趣。自动结账 (ACO) 是该领域的关键问题之一,旨在从要购买的产品图像中自动生成购物清单。这个问题的主要挑战来自产品类别的大规模和细粒度特性,以及由于产品的不断更新,难以收集反映真实结账场景的训练图像。尽管具有重要的实践和研究价值,但这个问题在计算机视觉社区中并没有得到广泛的研究,主要是由于缺乏高质量的数据集。

本数据集具有以下特点:(1)它是迄今为止产品图像数量和产品类别最大的数据集。(2) 它包括在受控环境中拍摄的单品图像和由结账系统拍摄的多品图像。(3)它为结帐图像提供不同级别的注释。与现有数据集相比,我们的数据集更接近现实环境,可以衍生出各种研究问题。(4)它为结帐图像提供不同级别的注释。与现有数据集相比,该数据集更接近现实环境,可以衍生出各种研究问题。(5)它为结帐图像提供不同级别的注释。与现有数据集相比,我们的数据集更接近现实环境,可以衍生出各种研究问题。

无人机检测数据集

数据集链接:http://m6z.cn/5OOPQ7

该数据集包含 1962 个 .jpg 无人机图像,可以用于图像分类。优点:所有图像都经过清理、裁剪、重复删除、劣质质量删除等。缺点:图片为不同的尺寸。


公众号后台回复“项目实践”获取50+CV项目实践机会~

△点击卡片关注极市平台,获取 最新CV干货
极市干货
最新数据集资源: 医学图像开源数据集汇总
实操教程 Pytorch - 弹性训练原理分析《CUDA C 编程指南》导读
极视角动态: 极视角作为重点项目入选「2022青岛十大资本青睐企业」榜单! 极视角发布EQP激励计划,招募优质算法团队展开多维度生态合作!


点击阅读原文进入CV社区

收获更多技术干货

登录查看更多
0

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
重邮高新波等最新《少样本目标检测算法》综述论文
专知会员服务
33+阅读 · 2021年11月2日
专知会员服务
17+阅读 · 2021年4月24日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
19+阅读 · 2021年3月18日
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
28+阅读 · 2020年4月6日
自动驾驶方向开源数据集资源汇总
极市平台
2+阅读 · 2022年7月22日
NLP开源数据集汇总
夕小瑶的卖萌屋
1+阅读 · 2022年6月17日
人体姿态估计相关开源数据集介绍及汇总
极市平台
1+阅读 · 2022年3月27日
小目标检测相关开源数据集介绍及汇总
极市平台
1+阅读 · 2022年3月19日
开源真实场景图像检测数据集汇总
极市平台
1+阅读 · 2022年3月5日
15个目标检测开源数据集汇总
极市平台
0+阅读 · 2022年2月18日
21个深度学习开源数据集分类汇总
极市平台
0+阅读 · 2021年12月29日
资源 | 一份非常全面的开源数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年9月7日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月31日
VIP会员
相关VIP内容
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
重邮高新波等最新《少样本目标检测算法》综述论文
专知会员服务
33+阅读 · 2021年11月2日
专知会员服务
17+阅读 · 2021年4月24日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
专知会员服务
19+阅读 · 2021年3月18日
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
28+阅读 · 2020年4月6日
相关资讯
自动驾驶方向开源数据集资源汇总
极市平台
2+阅读 · 2022年7月22日
NLP开源数据集汇总
夕小瑶的卖萌屋
1+阅读 · 2022年6月17日
人体姿态估计相关开源数据集介绍及汇总
极市平台
1+阅读 · 2022年3月27日
小目标检测相关开源数据集介绍及汇总
极市平台
1+阅读 · 2022年3月19日
开源真实场景图像检测数据集汇总
极市平台
1+阅读 · 2022年3月5日
15个目标检测开源数据集汇总
极市平台
0+阅读 · 2022年2月18日
21个深度学习开源数据集分类汇总
极市平台
0+阅读 · 2021年12月29日
资源 | 一份非常全面的开源数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年9月7日
相关基金
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员