答案揭晓!在这一组照片中,由 GAN 生成的虚拟人像是二号小姐姐。可以看到,无论如何,目前由 GAN 及其衍生技术所生成的虚拟人像已经完全可以达到以假乱真的程度,其生成的人脸很难被人类从视觉上进行分辨。这自然是人像生成领域的一大进步,然而,这种可以被以极低成本大量生产的虚拟人像很容易被滥用于诸如虚假信息欺诈、社交媒体头像等等地方。
在这些场景下,如何从大量图片信息中分类出真实人脸与虚拟人像便成为了一个新的问题。其实初想或许会觉得这是一件很容易的二分类的问题,可以如果仔细一想一个二分类的判别器很难在 GAN 的训练机制下对分类真实人脸与虚拟人像取得良好的分类效果与鲁棒性。
在这样的背景下,来自 UAlbany 的学者们另辟蹊径,提出了一种基于物理的方法,通过暴露出 GAN 模型本身与真实物理世界交互的缺陷来巧妙识别出真实人脸与虚拟人像的方法,即通过识别瞳孔的形状来判断人脸的真实与否。让我们来看看这篇论文吧!
从上图可以看到,我们的眼睛中心是虹膜与瞳孔,白色的区域是巩膜。对于一个健康的成年人而言,瞳孔的形状一般是圆形的。如上图下方左侧的图像,从正面看瞳孔趋于正圆。而论文作者发现,使用 GAN 等技术生成的人脸,其瞳孔形状是不规则的,放大由 GAN 生成的虚假人像可以清楚的看到,其瞳孔的形状呈现了明显的不规则。
论文作者推断,出现这种现象的根本原因在于,类似 GAN 等模型实质上缺乏对人眼结构的真正理解,换而言之,GAN 等模型在生成人像时,仍然缺乏从人类生理结构出发的约束。而这种机制上的缺陷为判别真实人像与虚拟人像提供了可能。