直播预告 | 从GNN的视角出发,重新审视推荐系统

2021 年 10 月 6 日 图与推荐
深度学习模型是当今人工智能研究的核心。众所周知,对欧几里得数据(例如图像)和序列数据(例如文本)具有颠覆性学习能力的深度学习技术不能直接适用于图结构数据。这种差距推动了图深度学习研究的浪潮。近年来,已经开发了大量基于图结构数据的神经网络架构,这些架构已经成功应用于社交网络、计算机视觉,自然语言处理,推荐系统,智能风控,智能交通和生物计算学等领域,并取得了显着的性能提升。这波图论与深度学习交叉的研究浪潮也影响了其他科学领域,包括计算机视觉、自然语言处理、归纳逻辑编程、程序合成与分析、自动化规划、强化学习和网络安全。尽管图上的深度学习已经引起了极大的关注,但将其应用于其他领域时仍面临许多挑战,包括从方法论的合理性到实际商业业务表现。  

下面,我们就从GNN的视角出发,来重新审视推荐系统。

2021年10月10日 ,DataFunSummit: 图机器学习 在线峰会将如约而至。其中由来自 京东 纪厚业 博士出品 的推荐与图论坛,将邀请来自 快手 王晓伟 老师、 腾讯 易玲玲 老师 孙仕杰 老师、 孙鸿瑞 老师、 美团 黄祥洲 老师, 以及 阿里巴巴(前) 李厚意 老师 从图算法的视角出发,重新审视推荐系统,和大家一起探讨交流如何将图算法应用于推荐领域,并展示目前的一些最新进展,本次分享将全程直播。
稍后,我们将为大家对本次论坛,做详细介绍,感兴趣的小伙伴可以先识别二维码,免费注册报名,入群收看:

▌论坛日程

▌详细介绍

▌峰会报名

本次峰会将全程直播,欢迎大家识别二维码,免费注册报名:

10月10日,我们不见不散~

登录查看更多
0

相关内容

【NAACL2021】Graph4NLP:图深度学习自然语言处理,附239页ppt
专知会员服务
106+阅读 · 2021年6月12日
专知会员服务
97+阅读 · 2021年5月25日
专知会员服务
108+阅读 · 2020年12月21日
【KDD2020-清华大学】图对比编码的图神经网络预训练
专知会员服务
46+阅读 · 2020年6月18日
直播预告 | 大规模图机器学习框架&算法
图与推荐
0+阅读 · 2021年10月9日
直播预告 | 图机器学习在线峰会
图与推荐
0+阅读 · 2021年9月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年9月30日
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
【NAACL2021】Graph4NLP:图深度学习自然语言处理,附239页ppt
专知会员服务
106+阅读 · 2021年6月12日
专知会员服务
97+阅读 · 2021年5月25日
专知会员服务
108+阅读 · 2020年12月21日
【KDD2020-清华大学】图对比编码的图神经网络预训练
专知会员服务
46+阅读 · 2020年6月18日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年9月30日
相关论文
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
12+阅读 · 2018年9月15日
Top
微信扫码咨询专知VIP会员