原创 | cw2vec理论及其实现

2018 年 5 月 16 日 黑龙江大学自然语言处理实验室 刘宗林

导读

本文对AAAI 2018(Association for the Advancement of Artificial Intelligence 2018)高分录用的一篇中文词向量论文(cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information)进行简述与实现,这篇论文出自蚂蚁金服人工智能部。本文将从背景知识、模型简介、c++实现、实验结果、结论等几个方面来进行阐述。

一、背景知识

目前已经存在很多的词向量模型,但是较多的词向量模型都是基于西方语言,像英语,西班牙语,德语等,这些西方语言的内部组成都是拉丁字母,然而,由于中文书写和西方语言完全不同,中文词语包含很少的中文字符,但是中文字符内部包含了很强的语义信息,因此,如何有效利用中文字符内部的语义信息来训练词向量,成为近些年研究的热点。

通过观察中文字符内部组成,发现中文字符包含偏旁部首、字符组件,笔画信息等语义信息特征(如下图),基于偏旁部首和汉字组件特征的中文词向量模型已经有人提出,并取得了较好的效果。


本篇论文采用笔画信息作为特征,由于每个字符包含很多的笔画,类似于一个英文单词包含很多的拉丁字母,在这个基础之上,提出了笔画的n-gram特征。这个思想来源于2016年facebook提出的论文(Enriching Word Vectors with Subword Information),目前facebook这篇论文已经被引用300多次,影响力很大,cw2vec可以称之为中文版本的fasttext。

二、模型简介

1、 词语分割

把中文词语分割为单个字符,为了获取中文字符的笔画信息。

词语:大人 分割为:(1)大 (2)人


2、 笔画特征

获取中文字符的笔画信息,并且把字符的笔画信息合并,得到词语的笔画信息。

大: 一ノ丶 
人: ノ丶
大人: 一ノ丶 ノ丶

3、 笔画特征数字化

为了方便,论文提及把笔画信息数字化,用数字代表每一种笔画信息,如下图。


那么“大人”这个词的笔画信息就可以表示为:

大人: 一ノ丶 ノ丶
大人:13434

我从训练语料中获取到13354个汉字,并获取笔画信息,统计笔画种类和上图一致,只有5种笔画信息


4、 N元笔画特征

提取词语笔画信息的n-gram特征。

3-gram:134、343、434
4-gram:1343、3434
5-gram:13434
……

上述4个步骤,如下图:


5、cw2vec模型

word2vec提出了CBOW和Skip-Gram两个模型(详解),cw2vec在Skip-Gram基础之上进行改进,把词语的n-gram笔画特征信息代替词语进行训练,cw2vec模型如下图。

短语:治理 雾霾 刻不容缓
中心词:雾霾
上下文词:治理,刻不容缓



论文中提及上下文词向量(context word embedding)为最终cw2vec模型的输出词向量。

三、c++实现

论文目前还没有公开代码,在这里,我提供一个c++版本的cw2vec。这份代码不仅仅实现了cw2vec模型,还包括word2vec的 CBOW 和 Skip-Gram 两个模型,以及FaceBook提出的fasttext。关于这版的CBOW和Skip-Gram的性能,可以看一下word2vec,有简单的性能测试,以下是四个模型。

./word2vec    

skipgram  ------ train word embedding by use skipgram model  

cbow      ------ train word embedding by use cbow model  

subword   ------ train word embedding by use subword(fasttext skipgram)  model  

substoke  ------ train chinses character embedding by use substoke(cw2vec) model    


可以根据 -h 参数设置


./word2vec skipgram -h  

The Following arguments are mandatory:

-input                   training file path

-infeature               substoke feature file path

-output                  output file path

......  

subword是fasttext skipgram模型,substoke是cw2vec模型。substoke 需要笔画信息的特征文件,这里已经写好了一份脚本从汉典抽取笔画信息(extract_zh_char_stoke),具体使用查看README,特征文件类似于:

中 丨フ一丨

国 丨フ一一丨一丶一

庆 丶一ノ一ノ丶

假 ノ丨フ一丨一一フ一フ丶

期 一丨丨一一一ノ丶ノフ一一

......

cw2vec论文提出采用context word embedding 作为最终的词向量,在这份代码中,不仅仅考虑了context word embedding ,而且,根据fasttext提供的思路,把笔画信息的n-gram特征取平均作为最后的词向量,所以,substoke模型会输出两份词向量,vec代表context word embedding,avg代表笔画信息的n-gram特征取平均

需要包括的环境:

cmake
make
gcc

更多信息查看cw2vec-github。

四、实验结果

1、训练数据

训练数据采用最新的中文维基百科训练语料(处理过程),利用jieba分词工具对语料进行分词处理,最终得到1.2G的训练数据,根据论文,我们从1.2G的训练语料中获取前20%数据,用这份数据在Word Similarity任务上进行了评测。

2、参数设置

在对比实验中,几个模型的参数设置如下所示:


设置参数如下:

词向量维度:100

窗口大小:5

负采样数目:5

迭代次数:5

最小词频:10

学习率:skipgram(0.025),cbow(0.05),substoke(0.025)

n-gram特征:minn=3, maxn=18


3、实验结果

在中文word similarity任务上进行了评测,评测文件是 wordsim-240 和 wordsim-296,这两份文件来自于Chen et al. 2015; Xu et al. 2016,基于上述两份文件,我已经写好了一份中文词相似度评测脚本(Chinese-Word-Similarity-and-Word-Analogy),方便大家使用,详细信息看README,下面是实验结果。

下图和表中的substoke-average代表使用的词向量是笔画信息的n-gram特征取平均substoke-context代表使用的词向量是context word embedding



4、结果分析


从上面的实验结果来看,在word similarity任务上,总体来看,substoke模型要比skipgram,cbow两个模型结果要好。其中在wordsim-240上,substoke的两份词向量都要比word2vec的好,在wordsim-296上,substoke-context表现的相对差一些,但是substoke-average要好很多。

由于时间原因,目前仅在相似度任务上进行了评测,后续可能会在词汇类比,词性标注,命名实体识别,文本分类等多个任务上进行评测。

五、结论

中文字符内部结构包含了丰富的语义信息,这篇论文提出的思路,挖掘了中文字符笔画特征信息,上述实验证明是有效的,推动了中文词向量的工作进展,后续研究者可以在此基础之上进行实验,更加深层次的挖掘中文字符内部信息。



附:github链接

https://github.com/bamtercelboo/cw2vec


References

[1] Cao, Shaosheng, et al. “cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information.” (2018).
[2] Bojanowski, Piotr, et al. “Enriching word vectors with subword information.” arXiv preprint arXiv:1607.04606 (2016).
[3] Chen, Xinxiong, et al. “Joint Learning of Character and Word Embeddings.” IJCAI 2015.
[4] Sun, Yaming, et al. “Radical-enhanced Chinese character embedding.” ICNIP 2014.
[5] Li, Yanran, et al. “Component-enhanced Chinese character embeddings.” arXiv preprint arXiv:1508.06669 (2015).
[6] Yu, Jinxing, et al. “Joint Embeddings of Chinese Words, Characters, and Fine-grained Subcharacter Components.” EMNLP 2017.
[7] Mikolov, Tomas, et al. “Efficient estimation of word representations in vector space.” arXiv preprint arXiv:1301.3781 (2013).




推荐阅读

基础 | TreeLSTM Sentiment Classification

基础 | 详解依存树的来龙去脉及用法

基础 | 基于注意力机制的seq2seq网络

原创 | Simple Recurrent Unit For Sentence Classification

原创 | Highway Networks For Sentence Classification


欢迎关注交流


登录查看更多
0

相关内容

【人大】大规模知识图谱补全技术的研究进展
专知会员服务
86+阅读 · 2020年5月2日
人工智能学习笔记,247页pdf
专知会员服务
181+阅读 · 2019年12月14日
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
赛尔笔记 | CNN介绍及代码实现
哈工大SCIR
7+阅读 · 2019年1月23日
ACL 2018 | 利用Lattice LSTM的最优中文命名实体识别方法
黑龙江大学自然语言处理实验室
7+阅读 · 2018年7月3日
100+中文词向量,总有一款适合你
专知
12+阅读 · 2018年5月13日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
tensorflow LSTM + CTC实现端到端OCR
机器学习研究会
26+阅读 · 2017年11月16日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年5月11日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关资讯
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
赛尔笔记 | CNN介绍及代码实现
哈工大SCIR
7+阅读 · 2019年1月23日
ACL 2018 | 利用Lattice LSTM的最优中文命名实体识别方法
黑龙江大学自然语言处理实验室
7+阅读 · 2018年7月3日
100+中文词向量,总有一款适合你
专知
12+阅读 · 2018年5月13日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
tensorflow LSTM + CTC实现端到端OCR
机器学习研究会
26+阅读 · 2017年11月16日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
14+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年5月11日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
4+阅读 · 2017年10月30日
Top
微信扫码咨询专知VIP会员