谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

2022 年 7 月 20 日 极市平台
↑ 点击 蓝字  关注极市平台

作者丨蛋酱
来源丨机器之心
编辑丨极市平台

极市导读

 

可以确定的是,人工标注员完全没懂 Reddit 网友的梗。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

去年,谷歌发布了 GoEmotions 数据集,该数据集包含 58K 人工标注的 Reddit 评论,其中涉及 27 种情绪。


但一位名叫 Edwin Chen 的机器学习工程师却在使用该数据集的时候,偶然发现了一些令人哭笑不得的错误。

他们本来尝试自己在 GoEmotions 数据集上训练模型,注意到似乎存在一些深层的质量问题。于是他们 随机抽取了 1000 条评论,在其中 308 条中发现了严重错误

这里举一些有代表性的例子:

  • aggressively tells friend I love them—— 被标记为「愤怒」
  • Yay, cold McDonald's. My favorite.—— 被标记为「喜爱」
  • Hard to be sad these days when I got this guy with me—— 被标记为「悲伤」
  • Nobody has the money to. What a joke—— 被标记为「愉悦」
  • ……

光是从抽取的评论中,他们就统计到了 25 种被错误标记的情绪。

在人工智能领域,数据标注是一项非常基础,但也非常关键的工作。好的数据对于训练模型至关重要,当数据面临如此离谱的错误时,又该怎么训练模型并评估模型的性能呢?

Edwin Chen 最后发问:「我们真的可以相信谷歌能够创造出公正的现实世界人工智能吗?」

所以,是什么导致了这些问题?

有人说:「有没有可能,他们没请人工标注员,或者请的人工标注员并未掌握流利的英语?」


据了解,GoEmotions 数据集的标注还是有人工参与的,只不过这些标注员是「以英语为母语的印度人」。

在论文的第 3.3 节中,有这么一段话:「我们给每个样本分配了三个评估者。对于那些评估者没有达成一致的样本,我们分配了两个额外的评估者。所有评估者都是以英语为母语的印度人。」


因为根据「Cowen et al. (2019b) 这项研究的结论,印度和美国两地的英语使用者的情绪判断维度很大程度上是相同的。


事实是,尽管掌握了流利的英语,标注员之中的许多人可能不了解所标注文本的文化、社会背景。但这却是关键要点之一,尤其是对于 NLP 数据集,标注者必须具备充分的文化意识。


也就是说,鉴于很多标注员可能缺乏必要的背景知识,即使大多数的数据标注都不存在争议了(如上图),也不代表标注结果就是完全正确的。

造成这种问题的另一个重要原因是,数据集中的数据都没有附加的元数据 (比如作者或子版块名称)。原论文中也提到了这一点:


语言不是处于真空之中的,它所在的版块等信息非常重要。谷歌在构建数据集时却忽略了这一点。

这不是一个孤立事件:作者还提到,假如连谷歌这种拥有大量资源的公司都难以创建准确的数据集,那么我们见过的其他数据集质量更是难以想象。


好消息是,已经有学者关注到了这个问题。上个月,吴恩达发起了「以数据为中心的 AI」倡议,他表示,专注于提升人工智能系统的数据质量将有助于释放其全部力量。

如果你想部署现实中 work 的机器学习模型,是时候关注高质量数据集而不是更大的模型了。

参考链接:
https://arxiv.org/pdf/2005.00547.pdf
https://www.surgehq.ai/blog/30-percent-of-googles-reddit-emotions-dataset-is-mislabeled


公众号后台回复“ECCV2022”获取论文分类资源下载~

△点击卡片关注极市平台,获取 最新CV干货

极市干货
算法项目: CV工业项目落地实战大航海 | 附极力值攻略 极市打榜|目标检测算法上新!(年均分成5万)
实操教程 Pytorch - 弹性训练原理分析《CUDA C 编程指南》导读
极视角动态: 极视角作为重点项目入选「2022青岛十大资本青睐企业」榜单! 极视角发布EQP激励计划,招募优质算法团队展开多维度生态合作!

点击阅读原文进入CV社区

收获更多技术干货

登录查看更多
0

相关内容

使用博弈论进行国防资源分配管理
专知会员服务
80+阅读 · 2022年5月6日
1370亿参数、接近人类水平,谷歌对话AI模型LaMDA放出论文
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
GoEmotions:情绪分类更为细化的数据集
TensorFlow
0+阅读 · 2021年12月15日
赛尔笔记 | 自然语言处理中模型的“偷懒”
哈工大SCIR
0+阅读 · 2021年7月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2021年8月2日
已删除
Arxiv
32+阅读 · 2020年3月23日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
使用博弈论进行国防资源分配管理
专知会员服务
80+阅读 · 2022年5月6日
1370亿参数、接近人类水平,谷歌对话AI模型LaMDA放出论文
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
35+阅读 · 2021年8月2日
已删除
Arxiv
32+阅读 · 2020年3月23日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员