清华大学刘知远:如何写一篇合格的NLP论文

2019 年 3 月 11 日 机器之心
清华大学刘知远:如何写一篇合格的NLP论文

机器之心经授权转载

作者:刘知远


刚刚,清华大学副教授、博士生导师刘知远老师在知乎上发表了一些文章,为学习 NLP 的同学提供了论文写作指导。机器之心经授权转载此文章。


前几天刚过完 ACL 2019 投稿季,给不少同学的论文提供了修改建议。其中很多论文,特别是初学者的论文的问题都很相似。一想到未来还要给更多新同学重复这些话,决定索性把这些建议总结出来,不仅以后能少费一番唇舌,说不定还能帮助更多同学。于是就有了这篇短文。


本文题目取「合格」的论文,而不是优美的论文,或精彩的论文。一个原因是,我自知英文水平特别是词汇有限,从未写过自认精彩或优美的论文,并无资格提供这方面的建议。另一个原因是,下面会讲到,学术论文的关键目标并非辞藻优美而是清晰准确,我在这方面还积累了不少经验。凭借这些经验,相信「辞达已矣」不难,「言之有文」则各凭本事吧。


实际上,同组的刘洋老师对 NLP 学术论文写作做过非常全面而精彩的报告 [1],强烈推荐所有 NLP 同学都仔细阅读这份报告,相信会让你少走不少科研的弯路。而本文可以看做对这个报告的脚注或补充。


论文在 NLP 学术研究中的意义


NLP 是一门重视实践和应用的领域,创新成果可以是新的算法、任务、应用、数据、发现等,务求一个「新」字,其影响力则取决于它对该领域发展的推动作用。如下图所示,学术研究是一项系统工程,包括多个环节,共同完成对「创新」的追求:问题务求挑战,模型务求创新,实现务求准确,实验务求深入。


学术研究是一项系统工程


在这个系统工程中,论文的作用则是,向学术界同行清晰准确地描述成果的创新点、技术思路、算法细节和验证结果。明白这一点,才能正确的对待论文写作:一项乏善可陈的工作,很难通过写作变得众星捧月;一项充满创新的成果,却有可能因为糟糕的写作而无法向审稿人准确传递重要价值所在,延误成果发表。


一篇 NLP 论文的典型结构


NLP 学术会议(甚至包括期刊)论文已经形成比较固定的结构。绝大部分论文由以下六大部分构成:摘要(Abstract)、介绍(Introduction)、相关工作(Related Work)、方法(Method)、实验(Experiment)、结论(Conclusion)。少数论文会根据创新成果形式不同而略有不同,例如提出新数据集的论文,可能会把 Method 部分调整为 Dataset 的标注与分析,但不影响论文整体构成。每个部分作用不同:


  • 摘要:用 100-200 词简介研究任务与挑战、解决思路与方法、实验效果与结论。

  • 介绍:用 1 页左右篇幅,比摘要更详细地介绍研究任务、已有方法、主要挑战、解决思路、具体方法、实验结果。

  • 相关工作:用 0.5-1 页左右篇幅介绍研究任务的相关工作,说明本文工作与已有工作的异同。

  • 方法:用 2-3 页篇幅介绍本文提出的方法模型细节。

  • 实验:用 2-3 页篇幅介绍验证本文方法有效性的实验设置、数据集合、实验结果、分析讨论等。

  • 结论:简单总结本文主要工作,展望未来研究方向。


乍看这样每篇论文显得死板,实际上这正凸显了学术论文的真正意义,不追求在形式上给读者带来意外,而将读者注意力集中在论文介绍的研究成果上。


如前所说,论文的作用是向学术界同行清晰准确地描述成果的创新点、技术思路、算法细节和验证结果。由于学术界的同行评审制度,贯穿全文的线索和目标就是要论证这份工作的创新价值,每个部分都要各司其职为这个目标而服务。为了实现这个目标,需要作者特别注意以下几点:


(1)学会换位思考。要始终站在审稿人或读者的角度审视论文,思考如何更清晰地表达。这是初学者最容易忽视的问题:作为研究成果的亲历者,论文作者掌握所有细节,如果不多加留意,写作中就会出现新概念没有被明确定义就被使用等情况,很多描述和分析缺少逻辑衔接。对作者而言,这些省去的东西并不影响他对这些文字的理解;但对并不了解这份工作的读者而言,这无疑是一场噩梦,因为他们并没有作者脑中的那套背景信息。因此,写作时要时时留神,读者读这句时能否理解,所需要的背景知识前文是否已经介绍。


(2)注意逻辑严谨。严谨是学术论文的底色,从引用格式、公式符号到谋章造句,虽不至于美国法学期刊的 Bluebook 那么变态,都力求风格统一,行文严谨。引用、公式、拼写等方面都容易学,初学者更需要注意行文严谨,力求全文从章节、段落、句子等不同级别都逻辑严密,争取做到没有一句话没来由,没有一句话没呼应:


  • 章节层面,Introduciton 提到已有方法面临的几个挑战,就要对应本文提出的几个创新思路,对应 Method 中的几个具体算法,对应 Experiment 中的几个实验验证。

  • 段落和句子层面,段间要注意照应,是并列、递进、转折还是总分关系,需要谋划妥当,要有相应句子或副词衔接。段内各句,有总有分,中心思想句和围绕论述句分工协作。


除了整体结构上的建议外,每个部分也各有定式,下面按各部分提供一些写作建议,同时用我们最近发表的一篇 ACL 2018 论文 [2] 作为例子。


Abstract 和 Introduction 怎么写


Abstract 可以看做对 Introduction 的提要,所以我们先介绍 Introduction 的写法,然后再说如何写 Abstract。Introduction 是对整个工作的全面介绍,是决定一篇论文能否被录用的关键。一般 Introduction 这么写:起手介绍研究任务和意义;随后简介面向这个任务的已有方法;接着说明已有方法面临的关键挑战;针对这些挑战,本文提出什么创新思路和具体方法;最后介绍实验结果证明本文提出方法的有效性。这几个部分各挡一面,同时又有严密的内在逻辑。每个部分也各有章法,下面分别介绍对各部分的建议:


(1)研究任务。介绍本文的研究任务及其在该研究领域的重要价值和意义。如果是领域公认的重要任务的话,则可以不用详细论述其研究价值/意义;如果是新提出的研究任务,则需要花费比较多篇幅论证该任务的价值。如下所示论文 [2] 的第 1 段集中说明阅读理解研究任务。



(2)已有方法。从研究任务递进一步,介绍这个任务的已有代表方法。如下所示论文 [2] 的第 2 段,开始介绍 DS-QA。需要注意,这个已有方法需要是目前最好、最具代表性的,也是本文工作准备改进的。所谓站在巨人的肩膀上,一篇值得发表的论文需要找到那个最高的巨人。



(3)面临挑战。已有方法一定仍然存在某些不足或挑战,才需要进一步研究改进。因此,需要总结已有方法面临的挑战。这是 Introduction 的关键部分,起着承上启下的作用。初学者特别注意,这部分涉及对已有工作的评价,务必保证精准客观。要知道,当论文投稿至 NLP 国际会议后,是通过同行评审决定是否录用发表,评审人一般是小同行,有很大概率是已有工作的作者。所以这部分论述一定要做到客观公正,让这些工作作者本人也能信服。


如下所示论文 [2] 的第 3、4 段,先介绍 DS-QA 的 noisy labeling 挑战,并且通过举例直观呈现。面对这个挑战,已有一些相关工作,还需说明他们各自有什么不足和挑战,为引出本文创新思路做好铺垫。



(4)创新思路。水来土掩,兵来将挡,既然已有方法有这些不足和挑战,就需要有新的创新思路和方法。这部分需要注意与上面的」挑战「部分严丝合缝,密切呼应,让读者清楚领会到这些创新思路与方法的确能够解决或缓解这些挑战问题。


如下所示论文 [2] 的第 5 段,就是介绍创新思路和方法。可以看到,一般」面临挑战「和」创新思路「部分还配图示,更直观地展示本文要解决的挑战问题和创新思路。例如论文 [2] 这张丑丑的图,比较直观地展示了创新方法包括 Selector 和 Reader 两个模块和作用。也可以随便看我们的其他论文 [3],大部分论文都会在 Introduction 中提供图示。



(5)实验结论。除了在」创新思路「部分图文两开花地说明本文创新工作外,还要通过合理的实验验证方法的有效性。一般要得到」our method achieves significant and consistent improvement as compared to other baselines「的结论,从而验证本文工作的创新性。



有些论文最后还会体贴的总结本文的主要贡献,一般说」In summary, the key contributions are x-fold: (1)...(2)...(3)...「。这样做的好处是,可以帮助审稿人总结本文的创新点放在审稿意见中,节省不少工作量。但需要注意,这些创新点要简洁明了,不能是前文的简单重复,也不能 overclaim。如果要说」首次「提出或发现,一般也要前置」to the best of our knowledge「。此外还有论文最后一段会介绍接下来几个 Section 结构,个人感觉对一篇 8 页论文可能并不需要。


对于 Abstract,可以看做对 Introduction 的简介,最简单的做法是,以上每部分都精简为 1-2 句话组成 Abstract 皆可。如下是论文 [2] 的 Abstract 内容,可以看出与 Introduction 的对应关系。



Method 怎么写


这部分要详细介绍本文创新方法的具体细节,由于涉及非常艰涩的细节,要采用「总-分」结构来介绍。


这部分起手「总」的部分要介绍本文任务的符号定义,以及本文方法的框架组成,或者按步骤来介绍或者按模块来写,让读者对本文方法有全景式的理解。如下所示论文 [2] 的 Methodology「总」的部分,就先介绍一些符号,然后分别介绍了 Selector 和 Reader 两个模块的主要功能。



然后进入「分」的部分,则需对应「总」中的框架,分别介绍各关键模块/步骤。例如,论文 [2] 的 Methodology」分「的部分,就包括 3.1 Paragraph Selector、3.2 Paragraph Reader、3.3 Learning and Prediction。读者在」总「的部分已经对方法有全景式的了解,有的放矢,就比较容易理解每个模块的具体细节。而每个」分「的部分中,又可以进一步采用」总-分「结构进行介绍,例如 3.1 小节做完总体介绍后,又会按照 Paragraph Encoding 和 Question Encoding 分别介绍。为了更清晰地体现」总-分「结构,可以将各「分」的部分命名并加粗。



初学者特别注意,(1)Introduction 中对创新思路与方法的介绍,不要在 Method 中简单重复,否则会让认真通读全文的审稿人颇感厌烦。要做到前后照应,有所递进,前略后详,不妨使用「as mentioned in Section 1」来做关联。(2)Method 部分往往包含大量公式,需要保证公式风格和符号使用前后统一,新符号使用均需显式解释。


Experiment 怎么写


这部分要详细介绍与实验相关的具体细节。一般先介绍实验数据、评测标准和比较方法等基本信息。以论文 [2] 为例,实验部分首先介绍实验数据与评测标准(4.1 Datasets and Evaluation Metrics)、实验比较的已有代表方法(4.2 Baselines)、实验方法的参数设置(4.3 Experimental Settings)等基本信息。


在介绍完实验基本信息后,主要开展两种实验:


(1)主实验。目的是证明本文方法与已有方法相比的有效性。一般需要选取业界公认的数据集合或已有工作采用的实验验证方式,提升实验的可信性。对于学术论文而言,并不需要比该任务上最好的方法相比,只要证明采用本文创新方法与不采用本文方法相比更有效即可,也就是说,实验中尽量控制其他变量,只聚焦于本文关注的挑战问题即可。当然,如果能够因为本文创新思路,得到该任务上的最好效果,会更有吸引力,但不必总是强求。


一般实验结果用图表展示,然后在正文进行观察分析。例如,论文 [2] 的主实验部分先介绍不同 Selector 和 Reader 对实验效果的影响(4.4 Effect of Different Paragraph Selectors、4.5 Effect of Different Paragraph Readers),接着介绍主实验结果和观察分析(4.6 Overall Results)。其中表格中会把最好效果加粗显示,一般应大部分位于本文提出的方法;为了更加清晰明了,观察分析结论可用(1)(2)(3)列出,其中第 1 条一般要得出主要结论,即本文方法要显著优于已有方法。


主实验结果


主实验分析


(2)辅助实验。目的是展示本文创新方法的优势和特点。例如,不同超参数对本文方法的影响(Hyper-Parameter Effect),不同模块对本文方法效果的贡献(Ablation Test),不同数据划分对本文方法的影响(如 Few-shot Learning 相关工作比较常见),本文方法的主要错误类型(Error Analysis),本文方法能够改进效果的典型样例(Case Study)等。这些实验需要根据论文创新工作特点而有针对性的设计,一切要为体现本文的创新价值而服务。


例如,论文 [2] 的辅助实验包括 4.7 Paragraph Selector Performance Analysis、4.8 Performance with different numbers of paragraphs、4.9 Potential improvement、4.10 Case study 等,从各方面呈现本文提出方法的特点。


Experiment 部分的特点是要图文并茂,注重通过多个表格和图示来呈现本文方法的优势和特点,需要注意图表风格统一。初学者特别注意,要做到仅凭图表下方的说明文字就可以理解每张图表内容,不要让读者还要到跑到正文寻找相关说明。因为,很多有经验的审稿人在看完 Introduction 后,会直接跳到 Experiment 图表中寻找对比效果。


Related Work 怎么写


这部分主要是介绍本文任务和方法的相关工作,目标是通过对已有工作的梳理,凸显本文工作的创新价值。对已有工作的梳理,不应是对每个工作的简单介绍,而应当注意汇总、分类、分析,或者按照时间发展顺序,或者按照技术路线划分,例如论文 [2] 就是按照时间脉络介绍。


在对相关工作的介绍中,要注意暗合本文创新思路要解决的挑战,不应是单纯的介绍,而是夹叙夹议,时刻注意与本文工作的照应。在 Related Work 的最后,应该落脚到本文工作与已有工作相比,有什么新的思路,解决了什么挑战问题。


初学者特别注意,Introduction 和 Related Work 部分是特别需要导师或其他有经验学者帮助把关的。一是,不能遗漏重要相关工作,这点需要论文作者对相关领域工作保持跟踪;二是,与 Introduction 要求类似,对已有工作的评述务必精准客观。


Related Work 一般放在 Introduction 之后,或者 Conclusion 之前,这一般取决于论文工作的特点。对于那些与已有工作联系紧密、创新精微的工作,一般建议放在 Introduction 之后,方便读者全面了解本文工作与已有工作的关系,然后开始在 Method 介绍本文方法。而对于有些框架性创新工作,如果主要是对已有方法的组合,一般建议 Related Work 放在 Method、Experiment 之后即可。这点并无成法,完全根据行文方便来定。



Conclusion 怎么写


在论文最后会有总结展望,一般用一段来再次总结和强调本文的创新思路和实验结果,然后说明未来建议的研究方向和开放问题。这部分相对来讲比较固定。稍微留意的是,在准备论文最后阶段,如果发现论文有哪些应当做还没来得及做的,可以写作本文的未来工作。至少可以向审稿人表明你也想到这个问题了,赢得一点同情分。



其他建议


要想写出一篇合格的 NLP 论文,首先是态度问题,只有态度重视,才有可能不厌其烦地反复修改,才会「不择手段」地寻找各种办法来尽力改进论文(找学长找外教借助 Grammarly 工具等)。其次是动手问题,只有写下来,才可能不断改,只要改就能不断进步。最后是经验问题,要写得精彩可能需要天赋,而要写得合格,只要坚持写,不断根据评阅人和其他人的意见进行思考和修改,就可以进步。总之,坚持就是胜利。


实际上,我觉得论文写作,是对思维模式的训练。也许未来你并不会从事学术研究,但通过论文写作锻炼的凝练工作创新价值的能力、清晰传递复杂信息的表达能力,对未来工作中无论是工作沟通、成果展示等,都有重要帮助。所以还希望大家都能重视这个科研道路上难得的锻炼机会。加油!


小结


论文写作有很多需要注意的细节和技巧,很多领域甚至都有专门的厚厚一本指南来介绍写作技巧。这么一篇短文很难面面俱到,只是介绍一下我指导同学准备论文提的比较多的建议,希望对大家有用。以后想到任何新的建议,随时更新。也欢迎各位反馈建议和问题,共同进步。


相关链接


  • 刘洋. 机器翻译学术论⽂ 写作⽅法和技巧. http://nlp.csai.tsinghua.edu.cn/~ly/talks/cwmt14_tut.pdf

  • Yankai Lin, Haozhe Ji, Zhiyuan Liu, Maosong Sun. Denoising Distantly Supervised Open-Domain Question Answering. ACL 2018. http://nlp.csai.tsinghua.edu.cn/~lzy/publications/acl2018_qa.pdf

  • 个人主页:Publications


知乎原文链接:https://zhuanlan.zhihu.com/p/58752815?utm_source=wechat_session&utm_medium=social&utm_oi=27569910972416&from=timeline&isappinstalled=0&s_r=0



菜鸟发起「2019 菜鸟全球科技挑战赛—智能体积测量」,近百万元奖金等你来拿,点击阅读原文参与报名。

登录查看更多
9

相关内容

刘知远,清华大学计算机系副教授、博士生导师。主要研究方向为表示学习、知识图谱和社会计算。2011年获得清华大学博士学位,已在ACL、IJCAI、AAAI等人工智能领域的著名国际期刊和会议发表相关论文60余篇,Google Scholar统计引用超过2700次。承担多项国家自然科学基金。曾获清华大学优秀博士学位论文、中国人工智能学会优秀博士学位论文、清华大学优秀博士后、中文信息学会青年创新奖,入选中国科学青年人才托举工程、CCF-Intel青年学者提升计划。担任中文信息学会青年工作委员会执委、副主任,中文信息学会社会媒体处理专委会委员、秘书,SCI期刊Frontiers of Computer Science青年编委,ACL、COLING、IJCNLP领域主席。

摘要

学者们需花费大量时间阅读论文。然而,很少有人传授这项技能,导致初 学者浪费了大量时间精力。本文提出了一种高效实用的论文阅读方法——“三 轮阅读法”。同时,本文也描述了如何采用该方法进行文献综述。

1 概述

学者们出于各种原因阅读论文,比如为了准备一场学术会议或者一堂课,为了紧跟自己所在领域的研究进展,或者为了了解新领域而进行的文献综述。一般而言,一名学者每年会花数百小时来阅读论文。

高效阅读论文是一项极其重要但却很少被人传授的技能。因此,初学者不得不在自己的摸索中学习这项技能。结果是他们在此过程中浪费了很多精力,并且常常陷入深深的挫败感之中。

多年以来,我一直用一种简单的“三轮”方法来防止自己沉浸在一篇论文的细节中,然后才能掌控全局。本文对这种“三轮阅读法”进行了说明,并介绍了该方法在文献综述中的应用。此外,我可以根据我的需要和我有多少时间来调整论文评估的深度。

2 三轮阅读法

该方法的关键点在于分三轮阅读一篇论文,而非仔细地从头看到尾。每一轮阅读都在上一轮的基础上达成特定的目的:第一轮了解论文的大意,第二轮了解论文的主要内容(而非细节),第三轮深入理解论文。

2.1 第一轮阅读

第一轮属于鸟瞰式阅读,快速浏览论文。由此决定是否需要进入后两轮阅读。这一轮使用 5 至 10 分钟,包括以下五个步骤:

仔细阅读题目、摘要及导言;

阅读章节标题,略过其他内容;

浏览数学内容(如果有的话)来确定基本的理论基础

阅读结论;

粗略地看一下参考文献,识别出你已经读过的文献。

在第一轮的最后,你应该能回答以下五个问题:

类别:这篇论文属于什么类别?是实证量化分析?还是对现有方法进行改进?亦或是提出了一个新的理论?

背景:这篇论文与哪些论文有关联?分析的理论基础有哪些?

正确性:凭经验判断,这篇论文的前提假设是否成立?

贡献:这篇论文的主要贡献是什么?

清晰度:这篇论文的文字表述是否清晰?

基于上述信息,你可能决定不再阅读这篇文章。原因可能是你对论文的研究内容不感兴趣,或者是由于你对该领域不甚了解以致难以读懂论文。或者作者做出了无效的假设。第一关对于那些不在你研究领域的论文来说已经足够了,但是有一天可能会被证明是相关的。

顺便说一句,当你写一篇论文时,你可以预期大多数评论者(和读者)只会有一人关注到。注意选择连贯的章节和小节标题,并写出简明全面的摘要。如果一个审稿人看了一遍后还是不能理解文章的主旨,那么他很可能会被退稿;如果一个读者在五分钟后不能理解文章的要点,那么他很可能永远都不会读到这篇文章。由于这些原因,用一个精心挑选的图形来概括一篇论文的“图形摘要”是一个很好的主意,并且在科学期刊上越来越多地出现。

2.2 第二轮阅读

在第二轮中,更加仔细地阅读论文,但是略过细节(如证明过程)。这有助于 你边看边在空白处记下要点或者进行评论。

仔细阅读论文中的各类图片。坐标轴的标注是否准确?统计结果是否带有误 差棒,以表明结论在统计上是显著的?诸如此类的常见错误有助于你判断一 篇论文优秀与否。

标注出与你研究相关但是你尚未阅读过的参考文献(这有助于深入了解该论文的研究背景)。

第二轮阅读可能要花上一个小时。经过此轮阅读,你应该能掌握这篇论文的内容 了——可以用简洁的语言向其他人介绍论文的主要结论及相应的依据。对于你感 兴趣的、但不是你研究专长的论文而言,这种程度的理解已经足够了。

不过,有时即使完成了第二轮阅读仍然无法读懂一篇论文。原因可能是你对研 究主题不熟悉,文章中出现的各种术语及缩写阻碍了你的理解;亦或是你无法理解

文章的证明或者实验技术;也可能是文章写得很烂,包含了没有事实根据的观点;还可能是深夜读文章时你太累了。这时你有三个选择:

(1)把论文放在一边,希望 即使不看懂论文也能获得事业上的成功,

(2)先把论文放一放,去补充阅读相关的 背景材料,之后再回过头来阅读论文,

(3)坚持下去,进行第三轮阅读。

2.3 第三轮阅读

为了完全读懂一篇论文(尤其当你是审稿人时),需要进行第三轮阅读。这一 轮的关键点是基本重现论文,即采用与论文相同的假设,由你重新推演整个工作。通过比较你的工作与论文的工作,你可以很容易地发现论文的创新点,以及隐含的 缺点及假设。

这轮阅读关注的是细节。你应当识别出论文的所有假设并加以验证。更进一 步地,设想如果你是文章的作者,你会怎样论述文章的观点(idea)。将你的设想 与论文的实际论述相比较,能更深入地理解论文的证明以及论证技巧。这一过程 将有助于提升你自己的论证水平。在第三轮阅读中,你也应当记下有助于自己未 来研究的想法(ideas)。

对于初学者,这轮阅读需要四至五小时,而对于经验丰富的学者,仅需一小时 左右。这轮阅读过后,应当能凭记忆推想出整篇文章的结构,同时能清楚地说明文 章的优缺点。更为重要的是,应当能准确地指出文章隐含的假设,缺少的相关文献,以及实验或分析方法中可能存在的问题。

3 进行文献综述

文献综述是对研究者论文阅读能力的检验。在这过程中,你需要阅读几十篇、 上百篇的论文,而且这些论文可能并不属于你所熟悉的领域。你应该阅读哪些论 文?下面介绍如何利用三轮阅读法来回答这个问题。

第一步,使用 Google 或 CiteSeer 等学术搜索引擎以及恰当的关键词找到三至五篇近期发表的论文。对这些论文进行第一轮阅读,了解大致内容,然后重点阅读 论文的“相关工作”(或文献综述)章节。通过以上阅读,你将会找到近期相关工 作的概述,甚至找到一篇近期发表的综述论文。如果找到了这样的综述论文,那么 你的搜索工作就结束了,直接阅读这篇论文即可。如果没找综述论文,那么进入下 一步。

第二步,找到上述论文参考文献中反复出现的论文以及作者。这些论文及作者是你所在研究领域的关键文献及学者。先把论文下载好,然后去那些学者的个人 网页,查看他们近期将论文发表在哪些期刊、哪些学术会议上。这有助于你找到所 在领域的顶级期刊及会议,因为最好的学者通常会将成果发表在最好的期刊或会 议上。

第三步,到上述期刊及会议的网站上查看近期发表的论文。快速浏览论文标题。就能找到近期发表的高质量相关论文。这些论文连同你在第二步中找到的论文就 是你进行文献综述时需要阅读的第一批论文。对这些论文进行两轮阅读。如果这些 论文都引用了一篇你之前未列入上述名单的论文,那么找到并阅读之。如有必要, 这一过程可以反复进行下去。

4 本文作者的经验

过去十五年,我一直采用三轮阅读法来阅读会议论文、写审稿意见、做文献综述以及在讨论前快速阅读论文。这种规范的方法使我在把握整体内容前避免陷入无谓的细节中去。这种方法也有助于我估算评阅一组论文所需的时间。更为重要的是,我能根据我的需要以及所拥有的时间来灵活地调整论文阅读的深度。

5 相关文献

如果你是作为审稿人对论文进行评阅,那么你可以阅读 Timothy Roscoe 关 于论文评阅的论文 [1]。如果你计划写一篇科技论文,那么你可以浏览 Henning Schulzrinne 的网站 [2] 以及阅读 George Whitesides 关于此过程的出色总结 [3]。

6 请求

我会根据读者的反馈不断更新本文。如果读者对本文有任何评论或改进建议, 可以给我发邮件,也可以到 CCRo 网站反馈 [4]。

7 致谢

本文的第一版由我的学生起草,他们是 Hossein Falaki,Earl Oliver 及 Sumair Ur Rahman。感谢他们的工作。我也从 Christophe Doit 敏锐的评论以及 Nicole Keshav 出色的编辑中获益匪浅。本文受以下单位或项目资助:加拿大国家科学与工程委员会,加拿大首席研究 员计划,北电网络,微软,因特尔以及斯普林特公司(The National Science and Engineering Council of Canada, the Canada Research Chair Program, Nortel Networks, Microsoft, Intel Corporation, and Sprint Corporation.)。

参考文献

[1] T. Roscoe, “Writing Reviews for Systems Conferences,” http://people.inf.ethz.ch/troscoe/pubs/review- writing.pdf.

[2] H. Schulzrinne, “Writing Technical Articles,”http://www.cs.columbia.edu/ hgs/etc/writing-style.html.

[3] G.M. Whitesides, “Whitesides’Group: Writing a Paper,” http://www.che.iitm.ac.in/misc/dd/writepaper.pdf.

[4] ACM SIGCOMM Computer Communication Review Online, http://www.sigcomm.org/ccr/drupal/.

成为VIP会员查看完整内容
0
60

在过去的几年里,自然语言处理领域由于深度学习模型的大量使用而得到了发展。这份综述提供了一个NLP领域的简要介绍和一个快速的深度学习架构和方法的概述。然后,筛选了大量最近的研究论文,并总结了大量相关的贡献。NLP研究领域除了计算语言学的一些应用外,还包括几个核心的语言处理问题。然后讨论了目前的技术水平,并对该领域今后的研究提出了建议。

成为VIP会员查看完整内容
0
153
小贴士
相关论文
Attention Forcing for Sequence-to-sequence Model Training
Qingyun Dou,Yiting Lu,Joshua Efiong,Mark J. F. Gales
6+阅读 · 2019年9月26日
Yang Liu,Mirella Lapata
5+阅读 · 2019年8月22日
Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks
Vineet Kosaraju,Amir Sadeghian,Roberto Martín-Martín,Ian Reid,S. Hamid Rezatofighi,Silvio Savarese
5+阅读 · 2019年7月17日
Junlang Zhan,Hai Zhao
3+阅读 · 2019年3月1日
Liang Yao,Chengsheng Mao,Yuan Luo
27+阅读 · 2018年11月13日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Dynamic Self-Attention : Computing Attention over Words Dynamically for Sentence Embedding
Deunsol Yoon,Dongbok Lee,SangKeun Lee
7+阅读 · 2018年8月22日
Pankaj Gupta,Subburam Rajaram,Hinrich Schütze,Bernt Andrassy
4+阅读 · 2018年5月1日
Qiang Cui,Shu Wu,Yan Huang,Liang Wang
5+阅读 · 2017年12月7日
Top