【WWW2021】动态排序学习最大化边际公平性

2021 年 3 月 13 日 专知


排名,尤其是搜索和推荐系统中的排名,通常决定了人们如何访问信息以及信息如何暴露给人们。因此,如何平衡信息披露的相关性和公平性是现代信息披露系统的关键问题之一。由于传统的排名框架将文档与相关性进行短视排序,这将不可避免地引入不公平的结果曝光,最近关于排名公平性的研究主要集中在动态排名范式,其中结果排名可以实时调整,以支持群体(如种族、性别等)的公平性。然而,现有关于动态学习排序公平性的研究,往往通过显著牺牲排名前结果的相关性和公平性来实现排序列表中文档曝光的总体公平性。为了解决这一问题,我们提出了一种公平无偏的排序方法——最大边际公平(maximum Marginal Fairness, MMF)。该算法集成了对相关性和基于绩效的公平性的无偏估计,同时提供了一个显式控制器来平衡文档的选择,以最大化top-k结果的边际相关性和公平性。理论分析和实证分析表明,我们的方法在长列表公平性上有较小的妥协,在top-k排序的相关性和公平性方面都取得了优于现有算法的效率和有效性。


https://www.zhuanzhi.ai/paper/d73684afc23a9d77ab4f6f18bb5b1ba7


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“MMFR” 就可以获取【WWW2021】动态排序学习最大化边际公平性》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

专知会员服务
43+阅读 · 2021年5月26日
专知会员服务
55+阅读 · 2021年5月17日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
61+阅读 · 2021年4月21日
专知会员服务
18+阅读 · 2021年4月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
专知会员服务
29+阅读 · 2021年2月21日
专知会员服务
28+阅读 · 2021年2月17日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
【WWW2021】基于图神经网络的社交好友排序
专知会员服务
48+阅读 · 2021年2月3日
【KDD2020】动态知识图谱的多事件预测
专知
88+阅读 · 2020年8月31日
【KDD2020】复杂异构网络中的高阶聚类
专知
8+阅读 · 2020年8月27日
【ICML2020】对比多视角表示学习
专知
19+阅读 · 2020年6月28日
【新书册】贝叶斯神经网络,41页pdf
专知
27+阅读 · 2020年6月3日
基于深度学习的多标签生成研究进展
专知
4+阅读 · 2020年4月25日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
43+阅读 · 2021年5月26日
专知会员服务
55+阅读 · 2021年5月17日
【SIGIR2021】基于嵌入的增量式时序知识图谱补全框架
专知会员服务
61+阅读 · 2021年4月21日
专知会员服务
18+阅读 · 2021年4月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
专知会员服务
29+阅读 · 2021年2月21日
专知会员服务
28+阅读 · 2021年2月17日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
【WWW2021】基于图神经网络的社交好友排序
专知会员服务
48+阅读 · 2021年2月3日
Top
微信扫码咨询专知VIP会员