基于改进卷积神经网络的短文本分类模型

2020 年 7 月 22 日 专知


摘要: 基于卷积神经网络, 提出一种基于改进卷积神经网络的短文本分类模型. 首先, 采用不同编码方式将短文本映射到不同空间下的分布式表示, 提取不同粒度的数字特征作为短文本分类模型的多通道输入, 并根据标准知识库提取概念特征作为先验知识, 提高短文本的语义表征能力;其次, 在全连接层增加自编码学习策略, 在近似恒等的基础上进一步组合数字特征, 模拟数据内部的关联性;最后, 利用相对熵原理为模型增加稀疏性限制, 降低模型复杂度的同时提高模型的泛化能力. 通过对开源数据集进行短文本分类实验, 验证了模型的有效性.

http://xuebao.jlu.edu.cn/lxb/CN/abstract/abstract4184.shtml


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“STCM” 可以获取《基于改进卷积神经网络的短文本分类模型》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
2

相关内容

专知会员服务
78+阅读 · 2020年8月4日
专知会员服务
129+阅读 · 2020年7月10日
专知会员服务
49+阅读 · 2020年6月14日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
77+阅读 · 2020年5月24日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
基于深度学习的文本生成【附217页PPT下载】
专知
35+阅读 · 2018年11月24日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
3+阅读 · 2017年8月15日
VIP会员
相关VIP内容
专知会员服务
78+阅读 · 2020年8月4日
专知会员服务
129+阅读 · 2020年7月10日
专知会员服务
49+阅读 · 2020年6月14日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
基于多头注意力胶囊网络的文本分类模型
专知会员服务
77+阅读 · 2020年5月24日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
Top
微信扫码咨询专知VIP会员