干货 :如何看穿数据可视化的谎言

2017 年 9 月 29 日 数据分析 新浪新媒体实验室

来自:Flowingdata;By:Nathan Yau;新浪新媒体实验室 独家编译;

本文转自:新浪网;原文链接:http://news.sina.com.cn/2017-02-15/doc-ifyarmcu6008746.shtml;  

  

以前我们看到一个做得很烂的图表,或者穿帮的数据可视化作品时,往往是将它们嘲笑一番也就算了。但有些时候,尤其是刚过去的这一年,我们好像更难分辨一个可视化作品是单纯的糟糕产物,还是出于偏见而刻意制造的虚假信息。

  

当然,用数据来撒谎已经不是什么新鲜事儿了,但现在图表越来越容易被广泛传播,网上到处都是,而其中好多传递的是假象。你可能只是随便瞟了一眼,但一个简单的信息也可能在脑子里生根发芽。在你还不知道的时候,小李子已经在桌子上转起了陀螺,而没人关心它会停下来还是会一直转下去。

  

自然而然地,现在我们需要快速看穿一个图表是否在撒谎,而这篇图文就是你贴心的指导手册哟。

  

1)截断数轴


左边的y轴数据从10开始,纯粹的瞎话。右边的数据从0开始,很好。

  

长度是柱状图视觉呈现的关键,所以当某些人通过截断数轴而故意把长度缩短时,整个图表的差别就变得更明显了。这些人想要展现出比实际情况更剧烈的变化。我在另一篇文章里详细谈了这个问题。

  

2)双重数轴

它用了两种差距极大的比例,可能是为了强行扯上因果关系。

  

通过使用双重数轴,数据的量级可以根据两种度量来缩小或扩张。人们通常用它来表达相关度和因果关系。“因为这个东东,另一个事儿发生了,看,很清楚吧。”

  

Tyler Vigen做的假相关数据的项目是个极好的例子。

  

3)总和不对头

饼图中所有部分的比例加起来超过了100%。

  

一些图表专门要展示总体中的某些部分,而当这些部分加起来超过了总和,问题就很大了。比如,饼图代表的是总共100%,而如果每个扇形的比例加起来超过了100%?怪怪的噢。

  

可以看看这个搞笑的例子。

  

4)只看绝对值

这其实只是人口分布图。当你对比不同地方、种类或群体时,你必须考虑相对值,公平比较

  

任何事物都是相对的。你不能因为某个城镇发生了两起抢劫案,另一个只发生了一起,就说第一个镇更危险。万一第一个镇的人口是第二个的一千倍呢?更有效的方式往往是对比百分数和比例,而非绝对值和总值。

  

这幅xkcd的漫画很直白地展现了人口绝对数的影响。

  

5)有限范围

左图看上去增幅很大,但右图显示出这只是常态,且选定时间内的增幅实际并不明显。

  

人们倾向于精心挑选日期和时间段来配合特定的叙事,所以更应该考虑到历史背景、时常发生的事件,以及合理的用来比较的基准。

  

当你研究全局时,可能会发现有趣的事情。

  

6)奇怪的分级

左图只有两个分级,大于1的究竟包括些什么?可能在打掩护。右图更好,展示了更多变量。

  

有些可视化作品会过分简化一个复杂的模型,而非展示出原数据中完整的变量范围。这样做很容易会把一个连续的变量转化为从属于某一类别的变量。

  

广泛的分级在某些情况下很有用,但复杂性往往才是事物的意义所在。要防止过分简化。

  

7)混乱的面积比

30是10的三倍,但或许是为了增加显著性,图上最大的矩形比最小的大得可不止三倍。

  

如果按照面积来进行视觉上的编码,图形的大小比例就该是面积的比例。有些人却在做面积编码的可视化时,改变边长的比例来突出大小对比,完全是为了抓马啊。

  

有时这种错误是无意间造成的,更需要警觉。

  

8)操控面积维度

上下两个图形的面积相等,但看上去很不一样。

  

或许有人懂得怎么用面积来做视觉编码,却还(gu)是(yi)做出了上图这样的东西。我还没见过如此夸张的例子,但以后说不定就会有。我打赌连象形图都能出现,等着瞧吧。

  

9)为了三维而三维

千万别当你看到一个明明没必要还强行用三维的图表,请质疑它的数据、图表、作者及图表衍生出的任何事物。

  

划重点:

  

如果一个可视化作品出现了以上任何问题,并不代表它一定在撒谎。正如Darrell Huff在《如何用数据撒谎》里说的:

  

“本书的标题和里面一些内容可能像是在说,所有类似的作品都是为欺骗而生的产物。美国统计协会一个分会的主席曾经因为这个批评我,他觉得与其说出于欺骗,倒更像是能力不足。”

  

当然,这并不等于就可以原谅,毕竟也做错了嘛。但记住这点,你在骂某某某是骗子之前就可以再考虑考虑。

  

我的经验是,仔细检查那些令人震惊的、比想象中更具戏剧性的图表。

  

图表并不能让虚假的信息变成真的,数据也不能。它们会屈从于做图的人,也展示出信息本身之外更多的东西。那么,睁大你的眼睛咯。

  

[本文由新浪新媒体实验室独家编译,转载请注明来源];

来自:Flowingdata;By:Nathan Yau;新浪新媒体实验室 独家编译;

链接:http://news.sina.com.cn/2017-02-15/doc-ifyarmcu6008746.shtml;

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。

END


推荐:

优秀人才不缺工作机会,只缺适合自己的好机会。但是他们往往没有精力从海量机会中找到最适合的那个。100offer 会对平台上的人才和企业进行严格筛选,让「最好的人才」和「最好的公司」相遇。

扫描下方二维码或点击“ 阅读原文 ,注册 100offer,谈谈你对下一份工作的期待。一周内,收到 5-10 个满足你要求的好机会!

登录查看更多
0

相关内容

数据可视化是关于数据之视觉表现形式的研究。
一份简明有趣的Python学习教程,42页pdf
专知会员服务
76+阅读 · 2020年6月22日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
177+阅读 · 2020年6月3日
打怪升级!2020机器学习工程师技术路线图
专知会员服务
98+阅读 · 2020年6月3日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
234+阅读 · 2020年5月21日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
161+阅读 · 2020年5月14日
【干货书】流畅Python,766页pdf,中英文版
专知会员服务
224+阅读 · 2020年3月22日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
2019年Q1中国互联网流量季度分析报告
艾瑞咨询
5+阅读 · 2019年5月15日
Python奇淫技巧,5个数据可视化工具
机器学习算法与Python学习
7+阅读 · 2019年4月12日
干货来袭:漫谈概率统计方法与因果关系
数据猿
5+阅读 · 2018年2月23日
你用 Python 做过什么有趣的数据挖掘项目?
计算机与网络安全
4+阅读 · 2018年2月11日
用 Python 和 OpenCV 检测图片上的条形码
Python开发者
5+阅读 · 2018年1月20日
干货:10 种机器学习算法的要点(附 Python代码)
全球人工智能
4+阅读 · 2018年1月5日
如何用Python从海量文本抽取主题?
AI研习社
7+阅读 · 2017年7月6日
Arxiv
6+阅读 · 2020年2月15日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2019年3月29日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
一份简明有趣的Python学习教程,42页pdf
专知会员服务
76+阅读 · 2020年6月22日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
177+阅读 · 2020年6月3日
打怪升级!2020机器学习工程师技术路线图
专知会员服务
98+阅读 · 2020年6月3日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
234+阅读 · 2020年5月21日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
161+阅读 · 2020年5月14日
【干货书】流畅Python,766页pdf,中英文版
专知会员服务
224+阅读 · 2020年3月22日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
相关资讯
2019年Q1中国互联网流量季度分析报告
艾瑞咨询
5+阅读 · 2019年5月15日
Python奇淫技巧,5个数据可视化工具
机器学习算法与Python学习
7+阅读 · 2019年4月12日
干货来袭:漫谈概率统计方法与因果关系
数据猿
5+阅读 · 2018年2月23日
你用 Python 做过什么有趣的数据挖掘项目?
计算机与网络安全
4+阅读 · 2018年2月11日
用 Python 和 OpenCV 检测图片上的条形码
Python开发者
5+阅读 · 2018年1月20日
干货:10 种机器学习算法的要点(附 Python代码)
全球人工智能
4+阅读 · 2018年1月5日
如何用Python从海量文本抽取主题?
AI研习社
7+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员