极市导读
借助Python scripting功能,使用者能够提高自己的GDB调试技能,轻松解决繁复的工作。>>加入极市CV技术交流群,走在计算机视觉的最前沿
你还在用GDB调试程序吗?
如果是,那么我们是同道中人。但是你知道GDB有一个很强大的功能,Python scripting嘛?
如果是的,那么恭喜你,你是一个大牛。
本文主要讲述如何使用Python来提高你的GDB调试技能, 让你从繁重的重复的工作里面挣脱出来呼吸新鲜空气。
首先,第一件事,使用gdb7.x以上的版本,最好9.x的。因为Python的支持是从gdb7.0(2009年?)开始的。
gdb本来就支持自定义脚本辅助调试,为什么还要用Python脚本呢?因为自定义脚本的语法比较老,不如写Python欢快。如果你喜欢用原来的自定义脚本方法,那也是可以的。
借助Python,你可以将难看的数据变得好看,
借助Python,你可以将重复的工作变成一个命令,
借助Python,你可以更快的调试bug,
借助Python,你可以装逼,哈哈哈……
以下面的代码为例:
#include <map>#include <iostream>#include <string>using namespace std;int main() {std::map<string, string> lm;lm["good"] = "heart";// 查看map 里面内容std::cout<<lm["good"];}
当代码运行到std<<cout时, 你想查看map里面的内容,如果没有python和自定义的脚本,print lm看到的是
$2 = {_M_t = {_M_impl = {<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > >> = {<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > >> = {<No data fields>}, <No data fields>}, <std::_Rb_tree_key_compare<std::less<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > >> = {_M_key_compare = {<std::binary_function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool>> = {<No data fields>}, <No data fields>}}, <std::_Rb_tree_header> = {_M_header = {_M_color = std::_S_red, _M_parent = 0x55555556eeb0,_M_left = 0x55555556eeb0, _M_right = 0x55555556eeb0},_M_node_count = 1}, <No data fields>}}}
但是当你在gdb9.2里面输入print lm的时候,你看到的将是
(gdb) p lm$3 = std::map with 1 element = {["good"] = "heart"}
map里面有什么一清二楚。这是因为gdb9.x自带了一系列标准库的Python pretty priniter。如果你使用的是gdb7.x,那么你可以手动的导入这些pretty printer实现同样的效果。具体步骤如下:
下载pretty printer: svn co svn://http://gcc.gnu.org/svn/gcc/trunk/libstdc++-v3/python
在gdb里面输入(将路径改成你下载的路径):
pythonimport syssys.path.insert(0, '/home/maude/gdb_printers/python')from libstdcxx.v6.printers import register_libstdcxx_printersregister_libstdcxx_printers (None)end
这样你就可以放心使用了~
详细请看:
https://sourceware.org/gdb/wiki/STLSupport
https://codeyarns.com/2014/07/17/how-to-enable-pretty-printing-for-stl-in-gdb/
比如在调试的时候,你知道当前栈指向一个字符串,但是你不知道具体在哪里,你想遍历这个栈将它找出来,那么你可以借助Python自定义一个命令"stackwalk",这个命令可以直接Python代码遍历栈,将字符串找出来。
###################################################### Usage: to load this to gdb run:# (gdb) source ..../path/to/<script_file>.pyimport gdbclass StackWalk(gdb.Command):def __init__(self):# This registers our class as "StackWalk"super(StackWalk, self).__init__("stackwalk", gdb.COMMAND_DATA)def invoke(self, arg, from_tty):# When we call "StackWalk" from gdb, this is the method# that will be called.print("Hello from StackWalk!")# get the registerrbp = gdb.parse_and_eval('$rbp')rsp = gdb.parse_and_eval('$rsp')ptr = rspppwc = gdb.lookup_type('wchar_t').pointer().pointer()while ptr < rbp:try:print('pointer is {}'.format(ptr))print(gdb.execute('wc_print {}'.format(ptr.cast(ppwc).dereference())))print('===')except:passptr += 8# This registers our class to the gdb runtime at "source" time.StackWalk()
Note: wc_print是我写的另外一个简单Python命令,用于打印给定地址的宽字符串,具体实现留作习题~
当你调试多线程的时候,你发现callstack 一堆,而且好多都是重复的,如果它们可以自动去重或者折叠多好,这样你只需要关注一小部分。好消息!Python可以让你用一个命令就可以轻松搞定。而且已经有人写好了相应的代码,你只需要导入即可。详细介绍请看:
https://fy.blackhats.net.au/blog/html/2017/08/04/so_you_want_to_script_gdb_with_python.html
# From https://fy.blackhats.net.au/blog/html/2017/08/04/so_you_want_to_script_gdb_with_python.html####################################################### Usage: to load this to gdb run:# (gdb) source ..../path/to/debug_naughty.py## To have this automatically load, you need to put the script# in a path related to your binary. If you make /usr/sbin/foo,# You can ship this script as:# /usr/share/gdb/auto-load/ <PATH TO BINARY># /usr/share/gdb/auto-load/usr/sbin/foo## This will trigger gdb to autoload the script when you start# to acces a core or the live binary from this location.#import gdbclass StackFold(gdb.Command):def __init__(self):super(StackFold, self).__init__("stackfold", gdb.COMMAND_DATA)def invoke(self, arg, from_tty):# An inferior is the 'currently running applications'. In this case we only# have one.stack_maps = {}# This creates a dict where each element is keyed by backtrace.# Then each backtrace contains an array of "frames"#inferiors = gdb.inferiors()for inferior in inferiors:for thread in inferior.threads():try:# Change to our threads contextthread.switch()# Get the thread IDS(tpid, lwpid, tid) = thread.ptidgtid = thread.num# Take a human readable copy of the backtrace, we'll need this for display later.o = gdb.execute('bt', to_string=True)# Build the backtrace for comparisonbacktrace = []gdb.newest_frame()cur_frame = gdb.selected_frame()while cur_frame is not None:if cur_frame.name() is not None:backtrace.append(cur_frame.name())cur_frame = cur_frame.older()# Now we have a backtrace like ['pthread_cond_wait@@GLIBC_2.3.2', 'lazy_thread', 'start_thread', 'clone']# dicts can't use lists as keys because they are non-hashable, so we turn this into a string.# Remember, C functions can't have spaces in them ...s_backtrace = ' '.join(backtrace)# Let's see if it exists in the stack_mapsif s_backtrace not in stack_maps:stack_maps[s_backtrace] = []# Now lets add this thread to the map.stack_maps[s_backtrace].append({'gtid': gtid, 'tpid' : tpid, 'bt': o} )except Exception as e:print(e)# Now at this point we have a dict of traces, and each trace has a "list" of pids that match. Let's display themfor smap in stack_maps:# Get our human readable form out.o = stack_maps[smap][0]['bt']for t in stack_maps[smap]:# For each thread we recordedprint("Thread %s (LWP %s))" % (t['gtid'], t['tpid']))print(o)# This registers our class to the gdb runtime at "source" time.StackFold()
等等!还有好多,毕竟Python图灵完备,只要GDB提供相应的API,你想要啥都能实现。
会了这些,你就可以向新手装逼去了~
推荐阅读