人工智能顶会UAI 2019大会论文接受列表

2019 年 7 月 21 日 专知

【导读】UAI大会全称为Conference on Uncertainty in Artificial Intelligence,立足于不确定性人工智能领域,主要侧重于不确定性人工智能的知识表达、获取以及推理等问题。本文整理了2019年大会的接受论文列表,方便读者查阅。


ID: 1 Personalized Peer Truth Serum  for Eliciting Multi-Attribute Personal Data

Naman Goel, Boi Faltings 




ID: 6 Conditional  Expectation Propagation

Zheng Wang, Shandian Zhe 




ID: 7 A Sparse Representation-Based  Approach to Linear Regression with Partially Shuffled Labels

Martin Slawski, Mostafa Rahmani,  Ping Li 




ID: 13 On Fast Convergence of Proximal  Algorithms for SQRT-Lasso Optimization: Don’t Worry About its Nonsmooth Loss  Function

Xingguo Li, Haoming Jiang,  Jarvis Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao 




ID: 14 Correlated Learning for  Aggregation Systems

Tanvi Verma, Pradeep  Varakantham 




ID: 15 Causal Calculus in the Presence  of Cycles, Latent Confounders and Selection Bias

Patrick Forré, Joris M.  Mooij 




ID: 16 Variational Regret Bounds for  Reinforcement Learning

Ronald Ortner, Pratik Gajane,  Peter Auer 




ID: 17 Recommendation  from Raw Data with Adaptive Compound Poisson Factorization

Olivier Gouvert, Thomas Oberlin,  Cédric Févotte 




ID: 19 One-Shot Inference in Markov  Random Fields

Hao Xiong, Yuanzhen Guo, Yibo  Yang, Nicholas Ruozzi 




ID: 21 Truly  Proximal Policy Optimization

Yuhui Wang, Hao He, Xiaoyang  Tan 




ID: 24 Learning Factored Markov  Decision Processes with Unawareness

Craig Innes, Alex  Lascarides 




ID: 25 Expressive  Priors in Bayesian Neural Networks: Kernel Combinations and Periodic  Functions

Tim Pearce, Russell Tsuchida,  Mohamed Zaki, Alexandra Brintrup, Andy Neely 




ID: 28 Countdown  Regression: Sharp and Calibrated Survival Predictions

Anand Avati, Tony Duan, Sharon  Zhou, Ken Jung, Nigam H. Shah, Andrew Ng 




ID: 32 Reducing  Exploration of Dying Arms in Mortal Bandits

Stefano Tracà, Weiyu Yan,  Cynthia Rudin 




ID: 33 Comparing  EM with GD in Mixture Models of Two Components

Guojun Zhang, Pascal Poupart,  George Trimponias 




ID: 35 Efficient Search-Based Weighted  Model Integration

Zhe Zeng, Guy Van den  Broeck 




ID: 45 Causal Discovery with General  Non-Linear Relationships using Non-Linear ICA

Ricardo Pio Monti, Kun Zhang,  Aapo Hyvarinen 




ID: 47 BubbleRank: Safe Online Learning  to Re-Rank via Implicit Click Feedback

Chang Li, Branislav Kveton, Tor  Lattimore, Ilya Markov, Maarten de Rijke, Csaba Szepesvari, Masrour  Zoghi 




ID: 49 Coordinating Users of Shared  Facilities via Data-driven Predictive Assistants and Game Theory

Philipp Geiger, Michel Besserve,  Justus Winkelmann, Claudius Proissl, Bernhard Schoelkopf 




ID: 53 The Incomplete Rosetta Stone  problem: Identifiability results for Multi-view Nonlinear ICA

Luigi Gresele, Paul Rubenstein,  Arash Mehrjou, Francesco Locatello, Bernhard Schoelkopf 




ID: 55 Random  Clique Covers for Graphs with Local Density and Global Sparsity

Sinead A. Williamson, Mauricio  Tec 




ID: 64 Randomized  Iterative Algorithms for Fisher Discriminant Analysis

Agniva Chowdhury, Jiasen Yang,  Petros Drineas 




ID: 78 Dynamic Trip-Vehicle Dispatch  with Scheduled and On-Demand Requests

Taoan Huang, Bohui Fang, Xiaohui  Bei, Fei Fang 




ID: 83 Fall of Empires: Breaking  Byzantine-tolerant SGD by Inner Product Manipulation

Cong Xie, Oluwasanmi Koyejo,  Indranil Gupta 




ID: 86 Adaptive  Hashing for Model Counting

Jonathan Kuck, Tri Dao, Shenjia  Zhao, Burak Bartan, Ashish Sabharwal, Stefano Ermon 




ID: 91 Towards a  Better Understanding and Regularization of GAN Training Dynamics

Weili Nie, Ankit Patel 




ID: 101 Domain  Generalization via Multidomain Discriminant Analysis

Shoubo Hu, Kun Zhang, Zhitang  Chen, Laiwan Chan 




ID: 112 Efficient Planning Under  Uncertainty with Incremental Refinement

Juan Carlos Saborío, Joachim  Hertzberg 




ID: 118 Cubic Regularization with  Momentum for Nonconvex Optimization

Zhe Wang, Yi Zhou, Yingbin  Liang, Guanghui Lan 




ID: 122 Stability of Linear Structural  Equation Models of Causal Inference

Karthik Abinav Sankararaman,  Anand Louis, Navin Goyal 




ID: 124 Random  Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep  Learning

Robert Peharz, Antonio Vergari,  Karl Stelzner, Alejandro Molina, Martin Trapp, Xiaoting Shao, Kristian  Kersting, Zoubin Ghahramani 




ID: 127 Towards  Robust Relational Causal Discovery

Sanghack Lee, Vasant  Honavar 




ID: 128 The Role of Memory in Stochastic  Optimization

Antonio Orvieto, Jonas Kohler,  Aurelien Lucchi 




ID: 129 Random  Search and Reproducibility for Neural Architecture Search

Liam Li, Ameet Talwalkar 




ID: 138 Joint Nonparametric Precision  Matrix Estimation with Confounding

Sinong Geng, Mladen Kolar,  Oluwasanmi Koyejo 




ID: 144 General Identifiability with  Arbitrary Surrogate Experiments

Sanghack Lee, Juan D. Correa,  Elias Bareinboim 




ID: 148 Differentiable  Probabilistic Models of Scientific Imaging with the Fourier Slice Theorem

Karen Ullrich, Rianne van den  Berg, Marcus A. Brubaker, David Fleet, Max Welling 




ID: 152 Approximate Inference in  Structured Instances with Noisy Categorical Observations

Alireza Heidari, Ihab F. Ilyas,  Theodoros Rekatsinas 




ID: 156 Randomized  Value Functions via Multiplicative Normalizing Flows

Ahmed Touati, Harsh Satija,  Joshua Romoff, Joelle Pineau, Pascal Vincent 




ID: 158 A Fast Proximal Point Method for  Computing Exact Wasserstein Distance

Yujia Xie, Xiangfeng Wang,  Ruijia Wang, Hongyuan Zha 




ID: 159 Neural  Dynamics Discovery via Gaussian Process Recurrent Neural Networks

Qi She, Anqi Wu 




ID: 161 Fisher-Bures  Adversary Graph Convolutional Networks

Ke Sun, Piotr Koniusz, Zhen  Wang 




ID: 162 Epsilon-BMC: A Bayesian Ensemble  Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning

Michael Gimelfarb, Scott Sanner,  Chi-Guhn Lee 




ID: 163 Periodic  Kernel Approximation by Index Set Fourier Series Features

Anthony Tompkins, Fabio  Ramos 




ID: 164 Efficient Neural Network  Verification with Exactness Characterization

Krishnamurthy (Dj) Dvijotham,  Robert Stanforth, Sven Gowal, Sven Gowal, Chongli Qin, Soham De, Pushmeet  Kohli 




ID: 172 Augmenting  and Tuning Knowledge Graph Embeddings

Robert Bamler, Farnood Salehi,  Stephan Mandt 




ID: 174 A Tighter Analysis of Randomised  Policy Iteration

Meet Taraviya, Shivaram  Kalyanakrishnan 




ID: 176 Perturbed-History Exploration in  Stochastic Linear Bandits

Branislav Kveton, Csaba  Szepesvari, Mohammad Ghavamzadeh, Craig Boutilier 




ID: 191 An Improved Convergence Analysis  of Stochastic Variance-Reduced Policy Gradient

Pan Xu, Felicia Gao, Quanquan  Gu 




ID: 192 Deep Mixture of Experts via  Shallow Embedding

Xin Wang, Fisher Yu, Lisa  Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E.  Gonzalez 




ID: 193 Sampling-Free  Variational Inference of Bayesian Neural Networks by Variance Backpropagation

Manuel Haußmann, Fred A.  Hamprecht, Melih Kandemir 




ID: 204 Sliced  Score Matching: A Scalable Approach to Density and Score Estimation

Yang Song, Sahaj Garg, Jiaxin  Shi, Stefano Ermon 




ID: 205 Beyond Structural Causal Models:  Causal Constraints Models

Tineke Blom, Stephan Bongers,  Joris M. Mooij 




ID: 206 Be Greedy: How Chromatic Number  meets Regret Minimization in Graph Bandits

Aadirupa Saha, Shreyas  Sheshadri, Chiranjib Bhattacharyya 




ID: 210 Approximate Causal Abstractions

Sander Beckers, Frederick  Eberhardt, Joseph Y. Halpern 




ID: 213 The  Sensitivity of Counterfactual Fairness to Unmeasured Confounding

Niki Kilbertus, Philip J. Ball,  Matt J. Kusner, Adrian Weller, Ricardo Silva 




ID: 221 Belief Propagation: Accurate  Marginals or Accurate Partition Function -- Where is the Difference?

Christian Knoll, Franz  Pernkopf 




ID: 222 Finding Minimal d-separators in  Linear Time and Applications

Benito van der Zander, Maciej  Liśkiewicz 




ID: 228 A Bayesian Approach to Robust  Reinforcement Learning

Esther Derman, Daniel J.  Mankowitz, Timothy A. Mann, Shie Mannor 




ID: 232 Adaptivity and Optimality: A  Universal Algorithm for Online Convex Optimization

Guanghui Wang, Shiyin Lu, Lijun  Zhang 




ID: 234 Evacuate or Not? A POMDP Model  of the Decision Making of Individuals in Hurricane Evacuation Zones

Adithya Raam Sankar, Prashant  Doshi, Adam Goodie 




ID: 235 Probabilistic  Programming for Birth-Death Models of Evolution Using an Alive Particle  Filter with Delayed Sampling

Jan Kudlicka, Lawrence M.  Murray, Fredrik Ronquist, Thomas B. Schön 




ID: 239 Variational  Sparse Coding

Francesco Tonolini, Bjørn Sand  Jensen, Roderick Murray-Smith 




ID: 244 Learning with Non-Convex  Truncated Losses by SGD

Yi Xu, Shenghuo Zhu, Sen Yang,  Chi Zhang, Rong Jin, Tianbao Yang 




ID: 245 Active Multi-Information Source  Bayesian Quadrature

Alexandra Gessner, Javier  Gonzalez, Maren Mahsereci 




ID: 248 Cascading Linear Submodular  Bandits: Accounting for Position Bias and Diversity in Online Learning to  Rank

Gaurush Hiranandani, Harvineet  Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen, Branislav  Kveton 




ID: 253 Sinkhorn AutoEncoders

Giorgio Patrini, Rianne van den  Berg, Patrick Forré, Marcello Carioni, Samarth Bhargav, Max Welling, Tim  Genewein, Frank Nielsen 




ID: 262 How to Exploit Structure while  Solving Weighted Model Integration Problems

Samuel Kolb, Pedro Zuidberg Dos  Martires, Luc De Raedt 




ID: 264 Multi-Class Gaussian Process  Classification Made Conjugate: Efficient Inference via Data Augmentation

Théo Galy-Fajou, Florian Wenzel,  Christian Donner, Manfred Opper 




ID: 267 A Flexible Framework for  Multi-Objective Bayesian Optimization using Random Scalarizations

Biswajit Paria, Kirthevasan  Kandasamy, Barnabás Póczos 




ID: 275 Efficient Multitask Feature and  Relationship Learning

Han Zhao, Otilia Stretcu,  Alexander J. Smola, Geoffrey J. Gordon 




ID: 284 Practical Multi-fidelity  Bayesian Optimization for Hyperparameter Tuning

Jian Wu, Saul Toscano-Palmerin,  Peter I. Frazier, Andrew Gordon Wilson 




ID: 290 Adaptively  Truncating Backpropagation Through Time to Control Gradient Bias

Christopher Aicher, Nicholas J.  Foti, Emily B. Fox 




ID: 296 Sampling-free  Uncertainty Estimation in Gated Recurrent Units with Applications to  Normative Modeling in Neuroimaging

Seong Jae Hwang, Ronak R. Mehta,  Hyunwoo J. Kim, Sterling C. Johnson, Vikas Singh 




ID: 299 Online Factorization and  Partition of Complex Networks by Random Walk

Lin F. Yang, Zheng Yu, Vladimir  Braverman, Tuo Zhao, Mengdi Wang 




ID: 302 On Densification for Minwise  Hashing

Tung Mai, Anup Rao, Matt  Kapilevich, Ryan Rossi, Yasin Abbsi Yadkori, Ritwik Sinha 




ID: 310 N-GCN: Multi-scale Graph  Convolution for Semi-supervised Node Classification

Sami Abu-El-Haija, Amol Kapoor,  Bryan Perozzi, Joonseok Lee 




ID: 312 Problem-dependent Regret Bounds  for Online Learning with Feedback Graphs

Bingshan Hu, Nishant A. Mehta,  Jianping Pan 




ID: 315 Wasserstein Fair Classification

Ray Jiang, Aldo Pacchiano, Tom  Stepleton, Heinrich Jiang, Silvia Chiappa 




ID: 317 Variational Training for  Large-Scale Noisy-OR Bayesian Networks

Geng Ji, Dehua Cheng, Huazhong  Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik Sudderth 




ID: 319 Guaranteed Scalable Learning of  Latent Tree Models

Furong Huang, Niranjan UN,  Ioakeim Perros, Robert Chen, Jimeng Sun, Anima Anandkumar 




ID: 324 On First-Order Bounds, Variance  and Gap-Dependent Bounds for Adversarial Bandits

Roman Pogodin, Tor  Lattimore 




ID: 332 Noise  Contrastive Priors for Functional Uncertainty

Danijar Hafner, Dustin Tran,  Timothy Lillicrap, Alex Irpan, James Davidson 




ID: 334 Fake It  Till You Make It: Learning-Compatible Performance ort

Jonathan Bragg, Emma  Brunskill 




ID: 335 Literal or Pedagogic Human?  Analyzing Human Model Misspecification in Objective Learning

Smitha Milli, Anca D.  Dragan 




ID: 339 Convergence Analysis of  Gradient-Based Learning in Continuous Games

Benjamin Chasnov, Lillian J.  Ratliff, Eric Mazumdar, Sam Burden 




ID: 340 End-to-end  Training of Deep Probabilistic CCA on Paired Biomedical Observations

Gregory Gundersen, Bianca  Dumitrascu, Jordan T. Ash, Barbara E. Engelhardt 




ID: 341 Approximate Relative Value  Learning for Average-reward Continuous State MDPs

Hiteshi Sharma, Mehdi  Jafarnia-Jahromi, Rahul Jain 




ID: 345 Exact  Sampling of Directed Acyclic Graphs from Modular Distributions

Topi Talvitie, Aleksis  Vuoksenmaa, Mikko Koivisto 




ID: 352 Intervening on Network Ties

Eli Sherman, Ilya Shpitser 




ID: 356 Generating and Sampling Orbits  for Lifted Probabilistic Inference

Steven Holtzen, Todd Millstein,  Guy Van den Broeck 




ID: 368 Real-Time Robotic Search using  Structural Spatial Point Processes

Olov Andersson, Per Sidén, Johan  Dahlin, Patrick Doherty, Mattias Villani 




ID: 370 Social Reinforcement Learning to  Combat Fake News Spread

Mahak Goindani, Jennifer  Neville 




ID: 371 P3O: Policy-on Policy-off Policy  Optimization

Rasool Fakoor, Pratik Chaudhari,  Alexander J. Smola 




ID: 372 Causal Inference Under  Interference And Network Uncertainty

Rohit Bhattacharya, Daniel  Malinsky, Ilya Shpitser 




ID: 373 Revisiting Reweighted Wake-Sleep  for Models with Stochastic Control Flow

Tuan Anh Le, Adam R. Kosiorek,  N. Siddharth, Yee Whye Teh, Frank Wood 




ID: 380 Learnability for the Information  Bottleneck

Tailin Wu, Ian Fischer, Isaac  Chuang, Max Tegmark 




ID: 383 Learning  Belief Representations for Imitation Learning in POMDPs

Tanmay Gangwani, Joel Lehman,  Qiang Liu, Jian Peng 




ID: 393 Object Conditioning for Causal  Inference

David Jensen, Javier Burroni,  Matthew Rattigan 




ID: 403 CCMI :  Classifier based Conditional Mutual Information Estimation

Sudipto Mukherjee, Himanshu  Asnani, Sreeram Kannan 




ID: 406 Empirical  Mechanism Design: Designing Mechanisms from Data

Enrique Areyan Viqueira, Cyrus  Cousins, Yasser Mohammad, Amy Greenwald 




ID: 407 On the  Relationship Between Satisfiability and Markov Decision Processes

Ricardo Salmon, Pascal  Poupart 




ID: 410 Interpretable  Almost Matching Exactly With Instrumental Variables

M.Usaid Awan, Yameng Liu, Marco  Morucci, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky 




ID: 411 Low  Frequency Adversarial Perturbation

Chuan Guo, Jared S. Frank,  Kilian Q. Weinberger 




ID: 427 Markov Logic Networks for  Knowledge Base Completion: A Theoretical Analysis Under the MCAR Assumption

Ondrej Kuzelka, Jesse  Davis 




ID: 428 Identification In Missing Data  Models Represented By Directed Acyclic Graphs

Rohit Bhattacharya, Razieh Nabi,  Ilya Shpitser, James M. Robins 




ID: 432 A  Weighted Mini-Bucket Bound for Solving Influence Diagram

Junkyu Lee, Radu Marinescu,  Alexander Iher, Rina Dechter 




ID: 435 Subspace  Inference for Bayesian Deep Learning

Pavel Izmailov, Wesley J.  Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, Andrew Gordon  Wilson 




ID: 440 Off-Policy Policy Gradient with  Stationary Distribution Correction

Yao Liu, Adith Swaminathan,  Alekh Agarwal, Emma Brunskill 




ID: 441 Co-training for Policy Learning

Jialin Song, Ravi Lanka, Yisong  Yue, Masahiro Ono 




ID: 443 Variational Inference of  Penalized Regression with Submodular Functions

Koh Takeuchi, Yuichi Yoshida,  Yoshinobu Kawahara 




ID: 450 Probability Distillation: A  Caveat and Alternatives

Chin-Wei Huang, Faruk Ahmed,  Kundan Kumar, Alexandre Lacoste, Aaron Courville 




ID: 468 Bayesian  Optimization with Binary Auxiliary Information

Yehong Zhang, Zhongxiang Dai,  Bryan Kian Hsiang Low 




ID: 481 On Open-Universe Causal  Reasoning

Duligur Ibeling, Thomas  Icard 




ID: 496 Embarrassingly Parallel MCMC  using Deep Invertible Transformations

Diego Mesquita, Paul Blomstedt,  Samuel Kaski 




ID: 508 Fast  Proximal Gradient Descent for A Class of Non-convex and Non-smooth Sparse  Learning Problems

Yingzhen Yang, Jiahui Yu 




ID: 511 Block  Neural Autoregressive Flow

Nicola De Cao, Wilker Aziz, Ivan  Titov 




ID: 512 Exclusivity Graph Approach to  Instrumental Inequalities

Davide Poderini, Rafael Chaves,  Iris Agresti, Gonzalo Carvacho, Fabio Sciarrino 





-END-

 · 

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!


欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询



请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
1

相关内容

The Conference on Uncertainty in Artificial Intelligence (UAI) is the premier international conference on research related to representation, inference, learning and decision making in the presence of uncertainty within the field of Artificial Intelligence. UAI is supported by the Association for Uncertainty in Artificial Intelligence (AUAI).
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
61+阅读 · 2020年1月18日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
NeurIPS2019机器学习顶会接受论文列表!
GAN生成式对抗网络
17+阅读 · 2019年9月6日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
61+阅读 · 2020年1月18日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
NeurIPS2019机器学习顶会接受论文列表!
GAN生成式对抗网络
17+阅读 · 2019年9月6日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Top
微信扫码咨询专知VIP会员