数据库并发2万就跪了?你需要这份指导性的知识框架

2019 年 6 月 5 日 DBAplus社群


如果各位看官的 SQL 数据库真有 2W+ 高并发,那真是要恭喜你。你已经比很多公司的 MIS 都要前卫得多。


2W 和 2K 差别有那么大吗?


嗯,真是有的。2K 并发的 MIS 系统也经常有无法访问,timeout 的异常,处理这些异常已经够很多朋友苦恼的了。2W+ 的并发那需要懂的知识框架就更复杂了。


笔者曾服务了 500W+ 用户的电商系统,7*24 小时的噩梦再也不想见。


前几年在一家拥有 500 多万直销顾问的团队做电商平台。平时的流量很平稳,基本都在千把,月底拼业绩才会冲一冲,来个 1W+ 的并发。


大部分的数据库开发人员在日常中还是没心没肺没压力的。但电商系统有个惯例,都是淘宝带出来的,会搞促销,类似于双 11. 一到这时间段,必须随时警惕流量是不是井喷,一旦跨越红线,系统就跟前期的 12306 一样,频频延迟。


随着 DBA 组的介入,才慢慢搞定这难题。本文的初衷也来自于这段经历的总结。


一、单实例数据库应用


这种应用架构最简单,UI + 应用服务器 + 数据库服务器,所有的请求,无论读写都直接抛给数据库。


往往项目初期,为了迅速的证明自己的点子靠谱,拿到市场,我们会选择这样的架构来实现产品。此时往往 10 万用户注册了,但每天访问的人数刚过 200,每张数据库表的总数,最大也不会超过 5000 条。


这样的应用,开发能力强的,1 个人就可以搞定,业务复杂的需要分前端和后端。


但无论如何都属于基础项目,如果你工作 3,4 了还是停留在这种模式下,那该补补课了。



事物总是在发展之中的,只要系统正常运行,总有一天用户量会加大,随之而来的请求会超乎你的想象(前提你是做了 pv, uv 的数据分析),很快这种架构会遇到用户超过 100 万,日访问量超过 20 万,峰值并发 2 万,而数据库的表会趋近于亿级的量。


此时应用系统如果还是建立在当初的硬件基础上(比如 16GB,16 核,240GB 硬盘)应该会明显感觉得到拖卡慢的尴尬,增多的是用户的抱怨和投诉。


就像 12306 前期的购票一样,往往轮到你的时候,票没了。



二、多实例数据库


遇到流量起来的应用,如果压力确定是在数据库上了,那么分库是必然的事情了。


将一个大库拆成若干小库,保持数据库对象都一致,这样每个小库分摊掉一部分流量,应用终将回归第一种简单架构上来,将用户服务好。


以现在的硬件服务 4000 个并发,对于不复杂的商用没有问题。具体能负责多少看系统上线后的 baseline (基线)监测,这里我们假定 4000 并发。所以分成 5 个相同的库,来做分库。这样同时写入 4000 并发够用。



这里会遇到一个技术细节,就是分库路由。


如何将流量均摊到每个库里,是需要研制算法的。比如已知全国用户分布均衡,即华东、华北、华西、华南和华中,各有 4000 用户。


我们依据地理位置分成 5 个库,根据用户身份证哈希成 5 个散列值,分别对应了这 5 台数据库,用户就被分流了。


只要用户不是剧烈增长,老板也满意这种小而美的生意,这样的架构可以一直沿用下去。基本不会有瓶颈。顶多就是时间长了,表数据越来越大了,我们用分库的思想进行分表就可以了。


当前年份(月份)数据放在主表里面,而历史数据就归档到聚合表里;或者索性每月,每年分成子表存储,而跨时间段的查询用视图来控制。


但用户的行为始终是不可控的,我么必须做一系列的事情来满足和留住用户。比如促销、打折、团购等等。


这个时候,用户的行为不仅仅是下个单买杯咖啡这么简单了。他们会大量查询他们的数据,带来的是读请求远远大于写入请求。


众所周知,读请求即使不影响写入请求(比如 MVVC),但也会耗尽服务器的 CPU\IO\Network 资源。那么我们必须更进入一层,读写分离。


三、读写分离


读写分离是另一种分库,但与前面的分库意图不一样。分出来的库和源库一模一样,且只读不接收用户的写入请求。实现细节每个数据库都不一样,也可以使用实时同步工具做,详情可以参考《Designing Data-Intensive Applications》这本书。不仅仅给出了指导思想,更有每种数据库的读写分离组件指南。



作者:Lenis

来源:有关SQL订阅号(ID:SQLHub)

dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn



掌握数据库管理新思路,获得更优操作启发

不妨来DAMS学点独家技能


↓↓扫码可了解更多详情及报名↓↓

2019 DAMS中国数据智能管理峰会-上海站

登录查看更多
0

相关内容

数据库( Database )或数据库管理系统( Database management systems )是按照数据结构来组织、存储和管理数据的仓库。目前数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
【2020新书】实战R语言4,323页pdf
专知会员服务
100+阅读 · 2020年7月1日
专知会员服务
30+阅读 · 2020年5月20日
【教程推荐】中科大刘淇教授-数据挖掘基础,刘 淇
专知会员服务
80+阅读 · 2020年3月4日
《代码整洁之道》:5大基本要点
专知会员服务
49+阅读 · 2020年3月3日
【书籍推荐】简洁的Python编程(Clean Python),附274页pdf
专知会员服务
179+阅读 · 2020年1月1日
【阿里技术论文】AliMe KBQA:阿里小蜜中的结构化知识问答
专知会员服务
82+阅读 · 2019年12月14日
在K8S上运行Kafka合适吗?会遇到哪些陷阱?
DBAplus社群
9+阅读 · 2019年9月4日
工行基于MySQL构建分布式架构的转型之路
炼数成金订阅号
15+阅读 · 2019年5月16日
亿级订单数据的访问与储存,怎么实现与优化
ImportNew
11+阅读 · 2019年4月22日
每个架构师都应该培养业务思维
InfoQ
3+阅读 · 2019年4月21日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
干货 :数据分析师的完整流程与知识结构体系
数据分析
8+阅读 · 2018年7月31日
基于 Storm 的实时数据处理方案
开源中国
4+阅读 · 2018年3月15日
一篇文章读懂阿里企业级数据库最佳实践
阿里巴巴数据库技术
5+阅读 · 2017年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Labeling Panoramas with Spherical Hourglass Networks
Arxiv
8+阅读 · 2018年6月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
在K8S上运行Kafka合适吗?会遇到哪些陷阱?
DBAplus社群
9+阅读 · 2019年9月4日
工行基于MySQL构建分布式架构的转型之路
炼数成金订阅号
15+阅读 · 2019年5月16日
亿级订单数据的访问与储存,怎么实现与优化
ImportNew
11+阅读 · 2019年4月22日
每个架构师都应该培养业务思维
InfoQ
3+阅读 · 2019年4月21日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
干货 :数据分析师的完整流程与知识结构体系
数据分析
8+阅读 · 2018年7月31日
基于 Storm 的实时数据处理方案
开源中国
4+阅读 · 2018年3月15日
一篇文章读懂阿里企业级数据库最佳实践
阿里巴巴数据库技术
5+阅读 · 2017年12月20日
Top
微信扫码咨询专知VIP会员