导读
2016年12月,中国人工智能学会举办了第一期《人工智能前沿讲习班》,国内视觉大数据学者王亮老师做了题为《深度学习与视觉计算》的报告。王亮老师在报告中介绍了视觉大数据的概念与特征、深度学习的发展背景与在计算机视觉领域的应用现状。本文根据王亮老师当日报告内容整理发布,详见后文。
讲者简介
王亮,研究员,博士生导师。1997年和2000年分别获安徽大学工学学士和硕士学位,2004年获中国科学院自动化研究所工学博士学位。2004-2010年分别在英国帝国理工大学、澳大利亚莫纳什大学、澳大利亚墨尔本大学及英国巴斯大学工作,历任助理研究员、研究员和讲师。2010年入选中国科学院“百人计划”(终期优秀),2015年获得国家杰出青年科学基金,2016年获得第十四届中国青年科技奖,2018年入选首都科技领军人才培养工程。
目前是模式识别国家重点实验室副主任,中国计算机学会计算机视觉专委会秘书长,中国图象图形学学会视觉大数据专委会主任,中国电子学会青年科学家俱乐部副主席,中国图像视频大数据产业技术创新战略联盟秘书长,中科院脑科学与智能技术卓越中心骨干人才。王亮博士主要从事机器学习、计算机视觉、模式识别、数据挖掘等相关领域的研究工作。现已出版编(专)著7部,在主要的国内外学术期刊和国际学术会议上发表论文200余篇,谷歌引用1万余次。他现为或曾为IEEE TIFS、IEEE TSMC-B、PR等国际学术刊物的编委,曾获得中科院院长奖学金特别奖、中科院优秀博士论文及全国百篇优秀博士论文提名奖等荣誉。他是电子电气工程师学会(IEEE)高级会员,国际模式识别学会(IAPR)会士。
全文目录
一、视觉大数据
1.1 视觉大数据的来源
1.2 大规模视觉计算的特点
1.3 视觉大数据带来的挑战
1.4 大规模视觉计算的关键问题
1.5 小结
二、深度学习的发展背景
2.1 传统数据分析方法
2.2 深度学习的特点
2.3 深度学习的应用
2.4 人工神经网络的发展历程
2.5 深度学习的兴起与发展
2.6 卷积神经网络和递归神经网络
2.7 小结
三、深度学习在计算机视觉领域的应用现状
3.1 物体分割与识别
3.2 多标签图像检索
3.3 数据关系学习
3.4 视频分析
3.5 神经网络可视化
四、深度学习的的未来研究方向
4.1 深度图像分析
4.2 深度视频分析
4.3 大规模的深度学习
4.4 无监督(半监督)学习
4.5 大规模多模态学习
4.6 类脑智能研究
一、视觉大数据
1.1 视觉大数据的来源
视觉大数据主要来源于互联网、移动互联网、广电网、视联网等。例如Facebook的注册用户超过8亿,每天上传的图片超过3亿张,视频超过300万个;从2009年到2014年,视频监控数据每年都以PB量级增长。时至今日,我们已然进入了视觉大数据时代,如何有效地利用视觉数据?将视觉数据转化为视觉红利?这需要我们对视觉大数据进行深入分析与理解。
视觉大数据的分析与理解在很多方面都有重要应用,比如休闲娱乐、自动驾驶、网络信息过滤、公安刑侦、机器人、视频监控、考勤安检等。视觉大数据的分析与理解是模式识别的前沿研究方向,也是当前比较火的人工智能突破口之一。
1.2 大规模视觉计算的特点
传统的视觉计算是对视觉信息或者数据的分析与处理,而大规模视觉计算是对大规模的视觉信息的分析与处理,它具有规模大、类别多、来源广这三个主要特点。
1.3 视觉大数据带来的挑战
大规模视觉计算带来了什么挑战?第一,跨景跨媒。跨场景指的是视觉数据来自于不同的应用场景;跨媒体指的是图像或者视频数据的出现通常还可能伴随着语音或文本,例如网络多媒体数据。第二,海量庞杂。视觉大数据不仅数据规模庞大,而且数据所包含的内容广泛,例如可能有娱乐视频、体育视频、新闻视频、监控视频等。第三,多源异质。同样的视觉数据可能来自于不同的数据源,例如体育视频可能来自于广播电视或者手机拍摄,数据可能来自RGB成像或者近红外成像。正是由于跨景跨媒、海量庞杂、多源异质等这些挑战,使得大规模视觉计算要比传统的视觉计算更加复杂和困难。
在小规模的PascalVOC数据集(20类目标,小于2万张图片)上,传统算法的分析精度很容易达到90%以上。但是对于大规模的ImageNet数据集(1000类目标,130万张图片),同样的算法其分析精度通常低于75%。这也是大规模视觉计算所带来的挑战。
1.4 大规模视觉计算的关键问题
大规模视觉计算有哪些关键问题?算法层面包含大规模特征表达、大规模模型学习、大规模知识迁移;系统层面包含大规模数据库构建、大规模数据处理平台。在系统层面,数据库是大规模视觉计算的根本,没有数据库就如同巧妇难为无米之炊。因此,建设大规模数据库是很重要的工作。计算机视觉领域著名的华人科学家李飞飞创建的ImageNet大规模数据集广为人知,现在ImageNet已成为视觉领域的经典数据集。今天在这里更多的介绍大规模视觉计算的算法层面,包括大规模的特征表达、模型学习和知识迁移这些问题。
第一个关键问题,大规模特征表达。
大规模特征表达,就是在多源异质的视觉大数据中找到具有较好泛化性和不变性的特征。在模式识别和计算机视觉领域中,强大的特征对于实际应用效果来说非常关键。因此,要分析跨景跨媒、多源异质的视觉大数据,就必须找到鲁棒的特征表达。
第二个关键问题,大规模模型学习。
视觉大数据时代,我们需要面对海量庞杂、种类繁多的视觉大数据。人工设计的特征不一定适用于大规模的模型学习。深度学习可以直接从海量数据中进行模型学习,且数据量越多模型效果越好,这是深度学习在大规模视觉计算中广泛应用的重要因素。
第三个关键问题,大规模知识迁移。
传统学习和迁移学习有什么区别?在传统学习中,每一数据域都有一个独立的学习系统,且不同域之间的学习过程是相互独立的。而在迁移学习中,源域学习得到的知识可以用以指导目标域的学习过程。
为什么在视觉大数据背景下进行知识迁移是可行的?答案可以总结为3V。第一,Volume。数据规模大,提供了足够的迁移数据源。第二,Variety。视觉大数据中的数据呈现多源异构多模态等性质,为知识迁移提供了必要条件。第三,Velocity。如今数据更新的速度特别快,利用迁移学习可以避免重复学习,即可以在已有模型的基础上更新模型,而不必对所有数据重新学习。
1.5 小结
在视觉大数据时代,如何能够有效地利用视觉数据来做有意义的事情?这需要研究大规模视觉计算。大规模视觉计算带来了新的挑战,包括海量庞杂、跨景夸媒、多源异质等问题。这其中包含了一些关键性问题,在算法层面有大规模特征学习、大规模模型学习、大规模知识迁移等;在系统层面有大规模数据构建问题,以及大规模视觉数据处理平台等。在视觉大数据时代,只有解决好大规模视觉计算的关键问题,才能把视觉大数据转换为视觉红利,这是非常重要的时代背景。
二、深度学习的发展背景
2.1 传统数据分析方法
传统的视觉信息处理,例如目标识别和检测,涉及到模式识别的两个经典问题,一是特征的提取与表示,二是模型的学习。传统方法需要经验知识手工设计视觉特征提取算法,缺少与环境的信息交互以及知识库的决策支持。例如,给定一幅“斑马”的图像,需要预测这幅图像的类别,按照传统的视觉模式分析,首先要提取特征,然后再额外利用SVM或者其他分类器进行模式分类。
深度学习可以解决端到端的模式识别问题,给定一个图像,经过“黑匣子”的学习,最终输出预测结果斑马。在这个端到端的识别的过程中,不加以区分地把特征提取和模型学习融为一体。通过深度神经网络来模拟从像素输入到“斑马”标签的非线性映射,即直接从原始数据到语义概念,这是对视觉大数据语义理解的变革性思路。
2.3 深度学习的应用
目前深度神经网络已在很多领域得到广泛应用,包括图像、声音、文本等多方面。深度模型学习是大数据时代视觉计算的重要突破,尤其从2006年开始,推动了视觉等众多领域的飞速发展。
2.4 深度学习的前身,人工神经网络的发展历程
学过模式识别的人都知道,深度神经网络是模式识别课程中比较经典的章节。而深度学习就是由深度神经网络发展而来的,现在比较流行的深度学习模型,例如CNN、RNN、LSTM等,早在几十年前便出现过。事实上,深度学习并不是新鲜事物,而是根源于传统的深度神经网络。
但是为什么深度神经网络在八九十年代没有流行?这和深度神经网络本身的缺陷有关。第一,深度神经网络包含着大量的参数。任意两个网络结点之间都有连接,当结点过多时,就会导致计算复杂度比较高。第二,需要大规模训练集。如果数据量不足就会导致模型过拟合。第三,相比其他的浅层模型,在识别准确率上没有明显优势。所以,在上世纪八九十年代以后,学者们更多选择手工设计特征加上浅层分类模型的策略。
为什么现在深度神经网络又会重新兴起?主要有两个方面的原因。第一是大规模数据的出现,使得模型拥有足够的数据用于训练。第二是高性能计算显著降低了数据处理的难度,而且高性能GPU的价格也开始平民化。大数据时代的到来和高性能计算的发展,恰好缓解了传统深度神经网络计算复杂度高和过拟合等问题。可以说,深度学习发展的转折点,就正是大数据和高性能计算时代的到来。
2.5 深度学习的兴起与发展
深度学习的兴起是从2006年发表在Science的文章开始的,这篇文章发现逐层预训练可以获得较好的局部最优解,使得训练更深层的神经网络模型成为可能,从而掀起了深度学习的热潮。在这段热潮之中,有一些先锋者,比如微软的邓力、斯坦福的吴恩达、多伦多大学的Hinton、纽约大学的Yan Lecun、蒙特利尔大学的Bengio等。
总体来说,按照模型划分,深度学习大致经历了三个主要阶段。
第一阶段,RBM/AE阶段,2006年开始
RBM是Restricted Boltzmann Machine的缩写,是早期深度学习的经典模型。AE是指自编码机模型。2006年Hinton发表在Science上的那篇文章,首先用逐层预训练的方法去初始化深度神经网络权重并取得了很好的效果,由此深度学习引起了大家的注意。RBM/AE是整个深度学习浪潮的开端。
在2006年RBM的基础上,后续出现了各种RBM和AE变形。在第一个阶段,主要是生成式模型,而且所使用的数据库基本上是中等规模的,模型方面也只是采用了相对较深层次的网络。这一阶段的热点问题是替代传统的手工设计特征,直接利用数据来进行表示学习。
第二阶段,CNN卷积神经网络
在2012年之前的ImageNet竞赛,传统方法在该竞赛中最高的识别率是2011年的74%。而到2012年,通过在GPU上使用卷积神经网络(CNN),可以把分类准确度提升11个百分点。在之后的几年里,所有参加竞赛的团队基本上都是使用的CNN模型,而且准确度逐年提升:2013年是89%、2014年是92%、2015年达到95%。
ImageNet竞赛之后,CNN强大的学习能力在各个视觉应用中得到了证明。例如,DeepFace在人脸识别当中的应用,DeepPose在姿态估计中的应用,RCNN在目标检测方面的应用等。
第二个阶段模型的特点可以简单地归纳为“判别式的模型”,使用的数据规模更大,网络层次也更深,并且开始使用GPU进行并行计算。这个阶段的热点问题,是利用卷积神经网络处理静态图像相关的各种任务,并不断刷新当前最好的性能。
第三阶段,RNN阶段,从2014年开始
前两个阶段都没有或很少考虑对序列数据建模,特别是对序列数据中的时间关系建模。递归神经网络(RNN)是序列化模型,其隐含层不仅接受当前时刻数据层的输入,同时也接受前一时刻隐含层的输入,因此RNN能够更好地解决时间关系建模问题。RNN随后在计算机视觉的各个任务都得到广泛应用,例如用于预测一段文字来表述图像内容。
2.6 卷积神经网络和递归神经网络
在计算机视觉领域中应用比较广泛的模型是CNN卷积神经网络和RNN递归神经网络。
卷积神经网络(CNN)也是深度神经网络(DNN)的一类经典形式。在深度神经网络中,每一个神经元都和其前后神经元相互连接。当输入数据的维度比较高时,就会带来大量需要学习的参数。
事实上,人眼在观察图像时,并不是感受整体图像,而只是观察局部的区域。受此启发,CNN在DNN的基础上替换了全连接操作,而改为局部连接的操作,也就是说一个神经元只与局部区域的神经元存在关联。此外,采用图像滤波的方式,使得不同区域的权值共享,可以显著减少模型的参数。
此外,CNN中很重要的操作就是池化(Pooling),它可以使CNN具有一定程度的平移不变性。例如,对于一个矩形框内的图像区域,框内的元素用某一种形式(例如最大值或均值等)保留,而去除其他元素。
因此,CNN的整体框架包括输入图像、卷积层、池化层,其中卷积层和池化层可以采用多层级联的方式,数量可以根据需要而设定。CNN所有的权值参数可以通过最小化模型的输出预测与真实值之间的误差来进行优化。
另外一个重要的模型就是RNN。左图展示一个三层的网络,x是输入层,h是隐含层,y是输出层,这是典型的三层的DNN网络。DNN通常用来处理静态数据,比如图像,但却不能很好地对时序关系建模,这就需要用到RNN。RNN是把序列数据,比如x1、x2、x3,作为网络输入并建模,最后得到输出y。在这个过程中,每个时刻的输入都对应着一个隐含层的表示,而相邻的隐含层之间又进行了一个连接操作。RNN可以看成是DNN沿着时间轴的扩展,它使用了额外的权重矩阵U,来对长距离的时间相关关系进行建模。
需要说明地是,RNN是非常深层的神经网络,尽管这里的RNN沿着时间轴仅有三步,但它不是三层的网络。这个RNN中,x1产生了h1,然后h1和x2的结合产生了h2,之后h2和x3的结合产生了h3,最后再输出,这其实是一个五层的网络模型。RNN的深度取决于输入序列的长度,短视频或者文本数据的长度一般都是大于20的,因此RNN就变成了很深层的神经网络。
如果RNN的深度大于10层,就不能有效地对长度距离相关关系进行建模。因为对所有的深度神经网络来说,增加了网络的深度,就容易在网络优化的过程中产生梯度消失或者梯度爆炸。
那么,什么是梯度消失或者梯度爆炸?下图是梯度传播公式,根据梯度的反向传播准则,误差传递到h(i)层时的梯度,其实是等于上一层h(i+1)层的梯度,乘以两类元素:第一是激活函数的导数,第二是网络的权重。如此迭代下去,等于顶层的梯度,乘以这两个元素的t次方。如果两个元素的乘积比较小(小于1),经过t次方以后,底层的梯度可能就接近零了,这被称作梯度消失;如果两个元素的乘积比较大(大于1),经过t次方以后可能非常大,就会出现梯度爆炸。所以当RNN比较深的时候,就需要解决梯度消失或者梯度爆炸的问题。
对于梯度爆炸,传统方法可以采用剪切形式直接拉回。即可以设定一个阈值,当计算出来的梯度超出阈值时,可以强制它回归到阈值的边界来。对于梯度消失,使得两个元素的乘积尽量接近于1比较好,因为1的t次方不会出现过大、过小的问题。
此外,还有一些更先进的网络结构可以缓解梯度消失和梯度爆炸的问题,例如LSTM和GRU模型。
2.7 小结
卷积神经网络和递归神经网络是深度学习的两个经典模型,这两个模型在计算机视觉领域应用广泛,希望上述介绍能让大家对CNN、RNN有一个基本的了解。
三、深度学习在计算机视觉中的应用
这里主要介绍我们近来一些代表性工作的背景和主要思想。
3.1 物体分割与识别
这是百度图像分割竞赛冠军2013年的工作。在图像或视频中,把用户指定的前景目标分割出来,这就是图像分割的基本概念。
我们当时选择典型的CNN框架,加入多通道的输入信息,利用三层上下文信息作为输入。可以采用不同尺度的框,来表示某像素周边的信息。图中显示的是以某一个位置中心点相关的三个不同尺度区域作为输入,并在CNN网络中将三个通道进行融合。CNN的训练目标是采用两个节点的二分类输出判断输入的中心点是前景还是背景。
当时我们的工作获得了竞赛特别奖,是国内性能最高的人形图像分割水平。基于这项技术,我们跟三星连续进行了两年合作,精度从之前的87%提高到95%以上,而且实时性非常好。
多标签图像文本的分类与检索,是TMM2015的工作。图像的标签(文本标注)和图像所表示的语义信息是相关的,是多模态的数据。多模态数据可以通过模态的重合来更好的表示,这些表示可以进一步用于信息检索。针对多模态数据的学习,要考虑两个方面,一是模态的缺失问题,有的图像缺少标注信息,即文本是缺失的;另外就是类别标签的共生关系,有些标签是整体出现的,利用标签之间的相关关系可以提高性能。
我们提出的模型包含两个阶段,第一阶段使用传统的RBM模型,对于每一个模态分别学习其特征表示,在这个过程中可以尽量去除模态相关的特性。第二阶段,使用多标签条件的RBM来进行模态的融合及多标签的学习。如果文本、图像模态都给定,可以共同输入来融合得到共同的表示h。如果文本模态缺失,只有图像模态,则可以利用图像模态来产生文本模态,然后再进行融合。
3.3 数据关系学习
广义自编码机,CVPR-DeepVision2014最佳论文奖的工作。传统的Autoencoder的目标是最小化其本身和重构结果之间的误差。为了能够学习数据的局部结构关系,我们在重构过程中考虑了数据之间的相似性。在优化中,不仅是利用输入数据重构其自身,还要重构其周围相关数据点。
深度聚类,是ICPR2014最佳学生论文,这个工作也是基于Autoencoder做的。这个工作改变目标函数,在重构输入数据误差的基础上加入了新的规则项Group sparsity,这样能够进一步学习到类别相关的隐含表示。
深度关系学习,是ICCV2015的工作。在传统的Boltzmann Machines中引入了关系的类别标签Z,并且提出了条件高阶玻尔兹曼机(CHBM)。在这个过程中,x、y是两个输入,他们之间的关系用Z表示。两者之间的关系可能受隐含因素h的影响,如人脸匹配可能受到光照、视角或者表情的影响,因此h就可以学习到光照影响的可能关系。这样的模型怎么学习?因为它所包含的权重W是四阶张量,可以把四阶张量分解到矩阵的方式来简化求解。
3.4 视频分析
群体行为分析,是NIPS2013年和IJCV2016年的工作。行为分析从复杂度上划分,开始是简单的个体行为,后来做结构化的行为(如骑马),也包括一些群体行为识别(如结婚典礼、毕业典礼)。为了对复杂行为进行识别,我们提出类相关RBM模型。这个模型由两块组成:一部分提出视频的低层语义特征输入到模型来学习视频的中层表达特征;另一部分基于视频的语义标签,利用模型自动关联相应知识,进而来指导学习过程。
跨视角步态识别,是TPAMI2017的工作。步态识别是通过人走路的方式进行人的身份识别。但是在不同视角下,走路外观变化是不一样的,因此步态识别必须要解决跨视角的问题。我们利用卷积神经网络,做到了当前最好的识别性能。
3.5 神经网络可视化
人脑中的视觉注意机制,大部分是任务驱动的以自上而下的方式进行的,这个过程可认为是异步神经元的反馈调节。我们把每一层的输出作为反馈,来控制每一个神经元节点,而不是不加选择的、把噪声、背景全部上传。这个工作尝试对“反馈机制”建模,来查找图像中特定类别的目标。为了进一步增强筛选结果,可以引入生物神经系统中的侧向抑制,即在每一层的神经元抑制中,加入相互抑制和相互增强的过程。
四、深度学习的未来研究方向
4.1 深度图像分析
需要进一步提升算法的性能,进而转化相应的实际应用。例如微软发布的App,用户上传图片来识别其年龄或者性别,但时有出错。
4.2 深度视频分析
视频相对于图片来说,其内容更加复杂且包含运动信息,做起来难度更大,因此,深度视频分析还处于起步阶段。但是视频分析的应用很广,例如人机交互的行为识别、监控视频分析、第一视角的视频分析等,因此加强深度视频分析可能是未来的方向。
4.3 大规模的深度学习
随着时间的推移,为了处理更大规模的数据,需要进行多GPU并行的分布式计算,这是处理海量数据必须做的。
深度神经网络本身是模拟大脑前馈提出的网络结构模型,但是当前大部分生物机制还没有应用到深度神经网络中。因此,类脑智能研究是有潜力且是更有意义的。
现在计算机视觉也成为了人工智能科技公司研究的重要方向,而人脸识别成了重要的一个研究分支,但似乎得到过度关注的人脸识别是否是未来计算机视觉的发展方向?而在学术界的技术专家也在向工业界转型,学界与业界的关注点到底有什么区别?新技术不断涌现,身在技术圈的技术人如何看待这些新兴技术,想要投身于人工智能研究的年轻学者们应该从什么方向开始努力?
带着这些疑问,InfoQ采访到了中科院自动化研究所王亮博士,请他从他专业的角度来为我们解答。
王亮博士做过不少关于动作识别、步态识别的研究,这些技术大量应用在视频监控上。虽然研究者们在这些方面已经做了大量工作,近期也取得了较大的进展,但是在王亮博士看来,目前还远不能说当前的视频监控技术已经成熟。王亮博士做出了如下分析:
“事实上,我们算法所做的实验大多是基于受限环境下所采集的视频数据,这种数据一般来说是比较容易的,即背景简单、个体单一,而且没有较大的遮挡。
但是对于实际视频监控而言,视频中个体尺度各异、视频分辨率低、个体部分遮挡、拍摄视角变化等问题都会影响到算法的实际应用效果。此外,除了上面提到的个体识别以外,还有许多类型的群体识别,比如打架等异常行为检测、群体事件识别、人群密度估计、人群流向预测等。这些群体识别比个体识别更加复杂,存在的挑战和困难也更多。综上所述,现在视频监控技术还远远没有达到成熟的水平。”
在图像识别方面,李飞飞团队做的数据集ImageNet已经存在了很久,虽然如此,王亮博士认为它仍旧是比较权威、被广泛应用的数据集,尤其是在目标识别模型的性能评估方面。该数据集至少在很长一段时间还会被继续大量使用,因为除了应用在目标识别任务上,它还被广泛用于其它视觉任务,例如使用ImageNet数据集进行模型预训练。
在近几年,李飞飞团队又做出了新的图像与语言结合的数据集Visual Genome,香港中文大学唐晓鸥团队也做出了专注人脸识别的数据集WIDERFACE。这些数据集都是最近公开的新数据集。
客观来说,任何一个数据集的建立都会存在一定的不足,这取决实际任务需求和客观资源限制等诸多因素,例如一个可能的问题就是样本类别不均衡。当然,在客观世界中,可能实际样本分布原本就是很不均衡的,但是从模型训练的角度来说,我们通常希望样本能均衡一些,这样训练出来的模型不会偏向某些类别,进而不同类别的识别性能不会相差太多。
王亮博士举了一个有趣的例子:“ImageNet数据集中属于人这个类别的样本特别多,但关于鸵鸟类别的样本就比较少,这样训练出来的模型对于人的分类性能就比鸵鸟要高很多,这就是样本不均衡所导致结果。”样本不均衡的情况甚至会有一些极端的体现,“再比如,LFW数据集也存在比较严重的类别不均衡问题,属于一个类别的样本最多几百,而最少只有一个。”
无论是Visual Genome还是WIDERFACE,它们都是在特定的任务情况下把数据集做得规模更大、细节更多、潜在用途更多一些。
以Visual Genome为例,王亮博士为我们进行了讲解:
“Visual Genome数据集其实是对目标识别数据集进行了扩充,在原有只提供目标类别的基础上,增加多种其它标注信息,包括目标属性、目标位置、目标与目标之间关系、目标文字描述等。
这样的数据集除了可以应用于目标识别任务之外,还可以用于图像描述生成、目标关系预测、视觉问答等其它任务。所以,数据集这个方面肯定会越做越好,或许在未来一些规模更大、更普适的数据集会被提出。
但是,值得注意的是,现在做得较多的都是图像数据集,随着视频技术的快速发展,会对相关视频数据库产生较大的需求,所以希望以后会有更多视频数据集。”
标记数据的成本较高,而生活中大部分数据都是无标记的,要想充分利用这种无标记数据,需要应用无监督学习算法。
早期的玻尔兹曼机和自编码机都是自深度学习流行起来,无监督学习的应用成果。它们是以重构数据自身的方式或者生成数据的方式来对无标记数据的潜在真实分布进行建模。
王亮博士指出,无监督学习存在一个问题是,通过它学习得到的模型性能通常要比监督学习低许多。因为它相对监督学习来说,毕竟缺少大量标记信息,目前无法学习到非常具有判别力的特征表示。事实上,当前要做纯粹的无监督学习可能并不是特别现实,但如果能够利用少量的有标记数据辅助来做半监督学习,可能会比较可行一些。
对抗生成网络(GAN)是最近热度较高的一种模型。它的基本原理是它有两个模型:一个生成器,一个判别器。判别器的任务是判断给定图像是否看起来“自然”,换句话说,是否像是人为(机器)生成的。而生成器的任务是,顾名思义,生成看起来‘自然’的图像,要求与原始数据分布尽可能一致。
对于GAN,王亮博士说:“它的难点可能在于训练一个好的生成器比较困难,其训练过程通常并不是特别稳定。尽管WGAN的提出可以缓解这一问题,但是我们在一些实验上发现,其效果并没有原始的GAN好。当然,GAN及其相关模型才刚刚起步,潜力很大,其应用范围有待进一步拓宽。”
从CNN到GAN,神经网络模型在不断的进步,同时也影响到了计算机视觉的发展,王亮博士从视频技术的角度为我们分析了计算机视觉发展过程中的关键技术节点:
“2012年ImageNet竞赛上,使用了CNN的模型性能比传统方法提升了大概11个百分点。自此以后,CNN强大的特征学习能力在不同视觉任务中都得到了证明,而且刷新了当时很多任务的最好结果。
当时的基于CNN模型叫做AlexNet,这个网络只有几层,后来出现的CNN模型包括VGGNet、GoogleNet、ResNet等网络层数变得越来越深,从当时几层到几十层,进而发展到现在的几百层。事实证明,网络越深其学习到的特征判别力越强,所以每一个新型深度网络的提出都阶梯式地推动了视觉领域快速发展。
从CNN这方面来讲,AlexNet、VGGNet、GoogleNet和ResNet都是很重要的技术结点。
对于视频方面来讲,2011年出现的3DCNN可能算是它的一个初始技术结点,其后续被扩展成一般化的视频特征提取网络C3D。在2014年前后RNN、LSTM这样时序模型的大量出现,也是处理视频这种时序数据的非常重要的技术结点。”
计算机视觉毕竟是一个比较偏实际应用的学科,它的研究内容大多还是由实际应用来驱动的。有人认为现在做计算机视觉的公司太多专注于研究人脸识别这样的功能分支,为什么很多公司都在专注做人脸识别这样一个任务呢?
王亮博士这样分析:“个人认为肯定还是受市场需求导向所致的。事实上,人脸识别在很多领域都有应用需要,正是由于这些需求从而推动了很多人去做这样一个事情。对于计算机视觉几个核心问题例如语义分割等,也有实际需求在推动一部分人研究。比如最近无人机、无人车比较火,这些任务都需要视频场景解析技术,由此视频语义分割技术吸引了大家越来越的多注意,相应的研究人员数量自然而然会增加。”
而作为研究人员,王亮博士认为应该更多关注两个方面:
在计算机视觉算法的理论层面去做一些事情。比如,大家都知道现在计算机视觉的很多技术都是基于深度学习的,但是深度学习的基础理论目前还不是太清楚,相关研究也非常少,这也是它经常遭人诟病的主要原因。
因为大部分研究最终还是要为实际应用服务的。
计算机视觉领域越来越多的学术界的专家学者加入了工业界:香港中文大学的贾佳亚教授加入了腾讯优图,前几年Yann LeCun加入了Facebook,还有谷歌的Geoff Hinton等等。中科院也成立了自己的银河水滴科技,王亮博士作为该公司技术顾问,从自己的角度谈了谈学界与业界关注点上的区别:
学术界做研究是面向国际学科前沿,更多关注算法层面的研究问题,所以创新性会比较高一些。对于工业界而言,主要是以实际应用为导向,例如基于当前比较有效的一些模型算法,针对具体问题改进以达到实用的目的。因此,相对学术界来说,工业界做的东西可能比较偏实用、更工程化一些,但同时创新性也相对低一些。
在计算机视觉发展过程中,很多模型算法都是基于机器学习算法衍生出来的。包括大家所熟悉的深度学习,其前身是深度神经网络,也是机器学习算法的一种。
计算机视觉领域如何应用大数据呢?
“事实上,深度学习本身就是一种大数据分析模型,而且在计算机视觉领域已经得到很好的应用。”
王亮博士补充道:
“深度学习的一个最大的特点就是能够利用大规模数据集来训练出更好的模型,并自适应地学习用于不同任务的数据特征表示。ImageNet数据库相对于早期的PASCAL VOC数据库来说,它的数据集规模是非常很大的。深度学习包括CNN在该大规模数据库上训练出来的模型能够更好地进行目标识别,这一过程利用到了大数据规模大信息多的特性,使得模型能够挖掘到更有用的信息。”
目前深度学习和大数据两者的有机结合确实给计算机视觉领域带来了很多红利,但是这样的红利能够持续多久呢?王亮博士认为不好预测,但是可以肯定的是:深度学习和大数据的潜力可能还没有被充分挖掘彻底。
王亮博士以CNN为例进行了分析:
“深度学习中的CNN,最早是几层的AlexNet,后来到了十几层的VGGNet,然后到了几十层的GoogelNet,甚至到最近几百层的ResNet,每一次这些新模型出现的时候,我们都怀疑深度学习是不是已经到了极限了?我们的模型性能是不是不可能再提升了?但是每一次又确确实实得有更深、精度更高的网络被提出来了,并且每一次都不同程度地推动了计算机视觉领域的发展。所以,我们说深度学习和大数据应该还是处于上升发展期,其带来的红利可能还会再持续较长一段时间。”
王亮博士的建议有两点
我平时无论是招生、招人,通常最关注的都是三个方面,编程、英语、数学。编程是实现算法的基础,数学是理解模型算法的基础,而英语是用于文献阅读、与人交流、文章写作的基础。编程、数学和英语,这三个方面缺一不可。
这几年人工智能迅速发展,国内内容相关的高质量期刊或者会议论文层出不穷,但是真正在国际范围内产生巨大影响的工作还是相对比较少的。不能说大部分都是跟风,但是很多情况下我们只是在别人的基础上修修改改,原创性的工作并不多。所以,如果大家愿意加入人工智能领域的话,应当志存高远,争取做出一些原创有影响力的工作。
王亮博士
中国科学院自动化研究所研究员,博导,IEEE 高级会员、国际模式识别协会会士(IAPR Fellow),模式识别国家重点实验室副主任、中国图象图形学学会视觉大数据专业委员会主任、图像视频大数据产业技术创新战略联盟秘书长、中国计算机学会计算机视觉专委会秘书长、中国电子学会青年科学家俱乐部副主席。中科院百人计划入选者(终期优秀),国家杰出青年科学基金获得者,国家青年科技奖获得者。2004 年获中科院自动化所工学博士学位。2004-2010 年分别在英国帝国理工学院、澳大利亚莫纳什大学、墨尔本大学及英国巴斯大学工作。主要研究领域是模式识别,计算机视觉,大数据分析等。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能金融”、“智能零售”、“智能驾驶”、“智能城市”;新模式:“财富空间”、“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”。
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com