【导读】本文收集了40个机器学习、深度学习、人工智能领域最优质的书籍、课程、新闻博客、论文等资料,供各位AI-er查阅,一起学习。
Source: https://bestofml.com
⊙书籍
⊙课程
⊙博客
⊙论文/代码
书籍 Books
《Grokking Deep Learning》
深度学习的使用方法
by Andrew Trask
地址:
https://www.manning.com/books/grokking-deep-learning?ref=bestofml.com
《Deep Learning Book》
经典深度学习书籍
by Goodfellow, Yoshua Benjio和Aaron Courville
地址:
https://www.deeplearningbook.org/?ref=bestofml.com
《Neural Networks and Deep Learning》
免费在线书籍
地址:
http://neuralnetworksanddeeplearning.com/?ref=bestofml.com
《Deep Learning with Python》
用python语言和强大的keras库进行深度学习
地址:
https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438/?ref=bestofml.com
《Hands-On Machine Learning》
简单、高效的工具,实现从数据中学习的程序
地址:
https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1491962291/?ref=bestofml.com
《Deep Learning - A Practitioner's Approach》
机器学习-尤其是深层神经网络-如何才能对你的公司产生真正的影响?
地址:
https://www.amazon.com/Deep-Learning-Practitioners-Josh-Patterson/dp/1491914254/?ref=bestofml.com
《Introduction to Machine Learning with Python - A Guide for Data Scientists》
机器学习已成为许多商业应用和研究项目的组成部分,但这一领域并不仅仅局限于大型公司和研究团队。如果你是Python的使用者,甚至初学者,这本书将教会你构建自己的机器学习解决方案的实用方法。
地址:
https://www.amazon.com/Introduction-Machine-Learning-Python-Scientists/dp/1449369413?ref=bestofml.com
课程 Courses
1
Machine Learning by Andrew Ng
最受欢迎的机器学习课程之一
地址:
https://www.coursera.org/learn/machine-learning?ref=bestofml.com
2
Machine Learing by ColumbiaX
机器学习算法要点
地址:
https://www.edx.org/course/machine-learning?ref=bestofml.com
3
Machine Learning A-Z
Udemy的动手Python课程
by Kirill Eremenko
地址:
https://www.udemy.com/machinelearning/?ref=bestofml.com
4
Intro to Machine Learning
Udacity的免费基础机器学习课程
地址:
https://cn.udacity.com/course/intro-to-machine-learning--ud120
5
Machine Learning for Trading
机器学习在交易中的应用
地址:
https://www.udacity.com/course/machine-learning-for-trading--ud501
6
Oxford Deep NLP
牛津大学2017年开设的深度自然语言处理课程
地址:
https://github.com/oxford-cs-deepnlp-2017/?ref=bestofml.com
7
Stanford UFLDL Tutorial
本教程介绍无监督的特征学习和深度学习的主要思想
地址:
http://deeplearning.stanford.edu/tutorial/?ref=bestofml.com
8
Stanford CS231n
包含视觉识别的卷积神经网络
地址:
http://cs231n.stanford.edu/?ref=bestofml.com
9
Stanford CS224d
自然语言处理中的深度学习
地址:
http://cs224d.stanford.edu/?ref=bestofml.com
10
Fast.ai
完全免费并广受好评的深度学习课程
地址:
https://www.fast.ai/?ref=bestofml.com
11
Introduction to Deep Learning
本课程的目的是让学习者了解现代神经网络及其在计算机视觉和自然语言理解中的应用
地址:
https://www.coursera.org/learn/intro-to-deep-learning?ref=bestofml.com
新闻/博客 News &Blogs
Towards Data Science
以数据科学为中心的媒体出版物
地址:
https://towardsdatascience.com/?ref=bestofml.com
AI Weekly
关于AI当前媒体覆盖的每周新闻简报
地址:
http://aiweekly.co/?ref=bestofml.com
Deep Learning Weekly
关于深度学习中的新发现、论文和探索的每周简报
地址:
https://www.deeplearningweekly.com/?ref=bestofml.com
The Algorithm
麻省理工关于AI的简报
地址:
https://go.technologyreview.com/newsletters/the-algorithm/?ref=bestofml.com
Import AI
Jack Clark(OpenAI)关于AI的博客
地址:
https://jack-clark.net/?ref=bestofml.com
Machine Learing Mastery
关于机器学习项目、tricks的很棒的初学者资源
地址:
https://machinelearningmastery.com/blog/?ref=bestofml.com
FastML
数据科学和机器学习的项目、技巧
地址:
http://fastml.com/?ref=bestofml.com
Starts & Bots
机器学习,数据分析等
地址:
https://blog.statsbot.co/?ref=bestofml.com
Machine Learning Subreddit
地址:
https://www.reddit.com/r/machinelearning?ref=bestofml.com
Dynamically Typed Newsletter
每两周一次的时事简报,有关于人工智能、机器学习技术和技术/创业行业的想法和链接
地址:
https://dynamicallytyped.com/?ref=bestofml.com
Skynet today
致力于提供最新的人工智能新闻和趋势,和深入的社论,可访问和知情的报道
地址:
https://www.skynettoday.com/?ref=bestofml.com
The Gradient
旨在使AI&ML的研究民主化,并对最新发展和长期趋势的最重要的新论文和观点进行无障碍和技术知情的报道。
地址:
https://thegradient.pub/?ref=bestofml.com
Distill
一本在线杂志,以一种清晰、动态和生动的方式预告ML研究
地址:
https://distill.pub/?ref=bestofml.com
Stanford AI Lab Blog
一个让学生、教师和研究人员与公众分享他们的工作的地方。
地址:
https://ai.stanford.edu/blog/?ref=bestofml.com
Lil'Lgo
地址:
https://lilianweng.github.io/lil-log/?ref=bestofml.com
Colah's blog
地址:
https://colah.github.io/?ref=bestofml.com
论文/代码 Papers
Arxiv Stats
地址:
https://arxiv.org/list/stat.ML/recent?ref=bestofml.com
Arxiv Sanity Preserver
地址:
http://www.arxiv-sanity.com/?ref=bestofml.com
Papers with Code
不同主题的论文及其代码实现
地址:
https://paperswithcode.com/?ref=bestofml.com
《深度学习:算法到实战》课程
中科院自动化所教授博士主讲
2019
专知出品
【专知人工智能知识星球】
长按扫码加入【专知人工智能知识星球】,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
【专知小助手】
长按扫码添加专知小助手微信,加入专知人工智能主题群,咨询《深度学习:算法到实战》课程,咨询技术商务合作。
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程