BAT题库 | 机器学习面试1000题系列(第241~245题)

2017 年 11 月 30 日 七月在线实验室

241.下图是同一个SVM模型, 但是使用了不同的径向基核函数的gamma参数, 依次是g1, g2, g3 , 下面大小比较正确的是 : 

A. g1 > g2 > g3

B. g1 = g2 = g3

C. g1 < g2 < g3

D. g1 >= g2 >= g3

E. g1 <= g2 <= g3

答案: C

 

242.假设我们要解决一个二类分类问题, 我们已经建立好了模型, 输出是0或1, 初始时设阈值为0.5, 超过0.5概率估计, 就判别为1, 否则就判别为0 ; 如果我们现在用另一个大于0.5的阈值,  那么现在关于模型说法, 正确的是 : 

A. 模型分类的召回率会降低或不变

B. 模型分类的召回率会升高

C. 模型分类准确率会升高或不变

D. 模型分类准确率会降低

A. 1

B. 2

C.1和3

D. 2和4

E. 以上都不是

答案: C

这篇文章讲述了阈值对准确率和召回率影响 :

Confidence Splitting Criterions Can Improve Precision And Recall in Random Forest Classifiers

 

243.”点击率问题”是这样一个预测问题, 99%的人是不会点击的, 而1%的人是会点击进去的, 所以这是一个非常不平衡的数据集. 假设, 现在我们已经建了一个模型来分类, 而且有了99%的预测准确率, 我们可以下的结论是 : 

A. 模型预测准确率已经很高了, 我们不需要做什么了

B. 模型预测准确率不高, 我们需要做点什么改进模型

C. 无法下结论

D. 以上都不对

答案: B

99%的预测准确率可能说明, 你预测的没有点进去的人很准确 (因为有99%的人是不会点进去的, 这很好预测). 不能说明你的模型对点进去的人预测准确, 所以, 对于这样的非平衡数据集, 我们要把注意力放在小部分的数据上, 即那些点击进去的人.

详细参考: https://www.analyticsvidhya.com/blog/2016/03/practical-guide-deal-imbalanced-classification-problems/

 

244.使用k=1的knn算法, 下图二类分类问题, “+” 和 “o” 分别代表两个类, 那么, 用仅拿出一个测试样本的交叉验证方法, 交叉验证的错误率是多少 : 

A. 0%

B. 100%

C.  0% 到  100%

D. 以上都不是

答案: B

knn算法就是, 在样本周围看k个样本, 其中大多数样本的分类是A类, 我们就把这个样本分成A类. 显然, k=1 的knn在上图不是一个好选择, 分类的错误率始终是100%

 

245.我们想在大数据集上训练决策树, 为了使用较少时间, 我们可以 : 

A.  增加树的深度

B.  增加学习率 (learning rate)

C.  减少树的深度

D. 减少树的数量

答案: C

A.增加树的深度, 会导致所有节点不断分裂, 直到叶子节点是纯的为止. 所以, 增加深度, 会延长训练时间.

B.决策树没有学习率参数可以调. (不像集成学习和其它有步长的学习方法)

D.决策树只有一棵树, 不是随机森林.


往期题目:

BAT机器学习面试1000题系列(第1~60题)

BAT机器学习面试1000题系列(第61~100题)

BAT机器学习面试1000题系列(第101~200题)

BAT机器学习面试1000题系列(第201~205题)

BAT机器学习面试1000题系列(第206~210题)

BAT机器学习面试1000题系列(第211~215题)

BAT机器学习面试1000题系列(第216~220题)

BAT机器学习面试1000题系列(第221~225题)

BAT机器学习面试1000题系列(第226~230题)

BAT机器学习面试1000题系列(第231~235题)

BAT机器学习面试1000题系列(第236~240题)




课程咨询|微信:julyedukefu

七月热线:010-82712840

登录查看更多
2

相关内容

Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
129+阅读 · 2020年3月15日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
BAT机器学习面试1000题(721~725题)
七月在线实验室
11+阅读 · 2018年12月18日
BAT机器学习面试题1000题(376~380题)
七月在线实验室
9+阅读 · 2018年8月27日
BAT机器学习面试题及解析(266-270题)
七月在线实验室
6+阅读 · 2017年12月13日
BAT题库 | 机器学习面试1000题系列(第226~230题)
七月在线实验室
9+阅读 · 2017年11月27日
BAT题库 | 机器学习面试1000题系列(第211~215题)
七月在线实验室
9+阅读 · 2017年11月22日
BAT题库 | 机器学习面试1000题系列(第196~200题)
七月在线实验室
17+阅读 · 2017年11月16日
BAT题库 | 机器学习面试1000题系列(第191~195题)
七月在线实验室
6+阅读 · 2017年11月15日
BAT题库 | 机器学习面试1000题系列(第161~165题)
七月在线实验室
7+阅读 · 2017年11月6日
BAT机器学习面试1000题系列(第116~120题)
七月在线实验室
16+阅读 · 2017年10月24日
BAT机器学习面试1000题系列(第51~55题)
七月在线实验室
10+阅读 · 2017年10月8日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
9+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
BAT机器学习面试1000题(721~725题)
七月在线实验室
11+阅读 · 2018年12月18日
BAT机器学习面试题1000题(376~380题)
七月在线实验室
9+阅读 · 2018年8月27日
BAT机器学习面试题及解析(266-270题)
七月在线实验室
6+阅读 · 2017年12月13日
BAT题库 | 机器学习面试1000题系列(第226~230题)
七月在线实验室
9+阅读 · 2017年11月27日
BAT题库 | 机器学习面试1000题系列(第211~215题)
七月在线实验室
9+阅读 · 2017年11月22日
BAT题库 | 机器学习面试1000题系列(第196~200题)
七月在线实验室
17+阅读 · 2017年11月16日
BAT题库 | 机器学习面试1000题系列(第191~195题)
七月在线实验室
6+阅读 · 2017年11月15日
BAT题库 | 机器学习面试1000题系列(第161~165题)
七月在线实验室
7+阅读 · 2017年11月6日
BAT机器学习面试1000题系列(第116~120题)
七月在线实验室
16+阅读 · 2017年10月24日
BAT机器学习面试1000题系列(第51~55题)
七月在线实验室
10+阅读 · 2017年10月8日
相关论文
Top
微信扫码咨询专知VIP会员