不可错过!北交《深度学习》专业课,附Slides与视频

2022 年 9 月 12 日 专知

§ 课程概述与简介:

    本课程主要面向硕士生,共32学时,暑期线上授课,讲述深度学习基本概念、经典深度学习模型及其实践,主要内容包括前馈神经网络、深度模型优化与正则化、 卷积神经网络、循环神经网络、无监督深度模型以及深度学习的局限性与前沿等,并介绍深度学习框架的编码实现和参数优化方法。本课程注重理论学习与实践应用的结合,除了课堂讲授之外,还将通过实践环节引导学生使用深度学习平台或工具,让学生通过实际应用来加深对理论的理解。本年度课程视频合集可在B站查看(点击查看视频合集)。


§ 课程目的与任务:

  • 本课程的目的是使计算机科学与技术以及其他理工科专业硕士生了解和掌握深度学习领域的基础理论和方法,了解深度学习理论与技术的发展脉络和关键知识体系的构成,了解深度学习理论与实践相互依存与促进的重要性。从科学的角度,了解深度学习所涉及的理论体系、数学基础、模型算法等。从工程的角度,了解深度学习在不同的领域所起到的重要推动作用。

  • 本课程的任务是学习深度学习的概念、理论和经典模型,并能够进行实践操作。课程采用讲授与上机实验相结合的形式,要求研究生通过本课程的学习,掌握和了解深度学习的概念、理论与经典算法,并可以使用深度学习模型完成一系列相关任务。


§ 理论课教学内容:

  • 第1讲:绪论。本讲主要进行课程简介、人工智能概述、机器学习概述、神经网络概述、深度学习概述等内容介绍。 [PDF] [视频回放]

  • 第2讲:基础知识。本讲主要介绍机器学习与深度学习的基本概念、相关数学(线性代数、微积分、概率与统计)基础、常见线性模型等。 [PDF] [视频回放]

  • 第3讲:深度学习框架简介及PyTorch入门。本讲主要介绍开源深度学习框架概述、开源框架核心组件、主流开源框架介绍、TensorFlow与PyTorch的比较、PyTorch入门等。 [PDF] [视频回放]

  • 第4讲:深度前馈网络。本讲主要介绍人工神经网络概念、神经网络结构、前馈神经网络结构、反向传播算法、自动梯度计算、神经网络参数优化的主要问题等。 [PDF] [视频回放]

  • 第5讲:深度模型优化与正则化。本讲主要介绍网络优化概念、小排量梯度下降、学习率与梯度优化、参数初始化与数据预处理、逐层归一化、超参数优化、过拟合与正则化等。 [PDF] [视频回放]

  • 第6讲:卷积神经网络I。本讲主要介绍卷积运算基础、卷积的动机、池化操作、卷积神经网络结构等。 [PDF] [视频回放]

  • 第7讲:卷积神经网络II。本讲主要介绍卷积神经网络参数学习、其他卷积方式(转置、空洞)、典型卷积神经网络简介(LeNet、AlexNet、Inception、残差网络)等。 [PDF] [视频回放]

  • 第8讲:循环神经网络I。本讲主要介绍网络记忆能力、循环神经网络结构、随时间反向传播(BPTT)算法、双向循环神经网络等。 [PDF] [视频回放]

  • 第9讲:循环神经网络II。本讲主要介绍长程依赖问题、长短期记忆网络(LSTM)、门控循环神经网络(GRU)、深层循环神经网络等。 [PDF] [视频回放]

  • 第10讲:无监督深度模型。本讲主要介绍Hopfield神经网络、玻尔兹曼机、受限玻尔兹曼机、深度玻尔兹曼机、深度信念网络、自编码器、自编码器变种及预训练等。 [PDF] [视频回放]

  • 第11讲:深度学习前沿与局限。本讲主要介绍注意力机制简介、深度生成模型简介、深度强化学习简介、图神经网络简介、深度学习局限、深度学习趋势等。 [PDF] [视频回放]

  • 第12讲:深度学习应用。本讲由华为高级工程师王聪做题为《AI框架的发展趋势以及MindSpore的实践》的讲座。 [视频回放]


地址:

https://rmcong.github.io/proj_deep_learning_ProfessionalCourse.html



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DL11” 就可以获取不可错过!北交《深度学习》专业课,附Slides与视频》专知下载链接

                       
专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取100000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取100000+AI主题知识资料
登录查看更多
0

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
重磅!819页pdf《动⼿学深度学习 Release 2.0.0-beta0》2022版
专知会员服务
403+阅读 · 2022年2月16日
专知会员服务
73+阅读 · 2021年6月12日
不可错过!CMU《深度学习导论》2020课程,附课件与视频
专知会员服务
79+阅读 · 2020年10月27日
深度学习了解一下(附53页Slides)
专知
48+阅读 · 2019年5月20日
中文课程!台大李宏毅机器学习公开课2019版上线
全球人工智能
14+阅读 · 2019年3月18日
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关基金
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
相关论文
Top
微信扫码咨询专知VIP会员