《Convolutional Neural Networks》是Andrw Ng深度学习专项课程中的第四门课。这门课主要介绍卷积神经网络(CNN)的基本概念、模型和具体应用。该门课共有4周课时,所以我将分成4次笔记来总结,这是第一节笔记。
机器视觉(Computer Vision)是深度学习应用的主要方向之一。一般的CV问题包括以下三类:
Image Classification
Object detection
Neural Style Transfer
下图展示了一个神经风格转换(Neural Style Transfer)的例子:
使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大。例如一张64x64x3的图片,神经网络输入层的维度为12288。如果图片尺寸较大,例如一张1000x1000x3的图片,神经网络输入层的维度将达到3百万,使得网络权重W非常庞大。这样会造成两个后果,一是神经网络结构复杂,数据量相对不够,容易出现过拟合;二是所需内存、计算量较大。解决这一问题的方法就是使用卷积神经网络(CNN)。
对于CV问题,我们在之前的笔记中介绍过,神经网络由浅层到深层,分别可以检测出图片的边缘特征 、局部特征(例如眼睛、鼻子等)、整体面部轮廓。
这一小节我们将介绍如何检测图片的边缘。
最常检测的图片边缘有两类:一是垂直边缘(vertical edges),二是水平边缘(horizontal edges)。
图片的边缘检测可以通过与相应滤波器进行卷积来实现。以垂直边缘检测为例,原始图片尺寸为6x6,滤波器filter尺寸为3x3,卷积后的图片尺寸为4x4,得到结果如下:
上图只显示了卷积后的第一个值和最后一个值。
顺便提一下,* 表示卷积操作。python中,卷积用conv_forward()表示;tensorflow中,卷积用tf.nn.conv2d()表示;keras中,卷积用Conv2D()表示。
转自:机器学习算法与自然语言处理
完整内容请点击“阅读原文”